OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5560–5572

Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption

Roman M. Chomko and Howard R. Gordon  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5560-5572 (1998)
http://dx.doi.org/10.1364/AO.37.005560


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When strongly absorbing aerosols are present in the atmosphere, the usual two-step procedure of processing ocean color data—(1) atmospheric correction to provide the water-leaving reflectance (ρ w ), followed by (2) relating ρ w to the water constituents—fails and simultaneous estimation of the ocean and aerosol optical properties is necessary. We explore the efficacy of using a simple model of the aerosol—a Junge power-law size distribution consisting of homogeneous spheres with arbitrary refractive index—in a nonlinear optimization procedure for estimating the relevant oceanic and atmospheric parameters for case 1 waters. Using simulated test data generated from more realistic aerosol size distributions (sums of log-normally distributed components with different compositions), we show that the ocean’s pigment concentration (C) can be retrieved with good accuracy in the presence of weakly or strongly absorbing aerosols. However, because of significant differences in the scattering phase functions for the test and power-law distributions, large error is possible in the estimate of the aerosol optical thickness. The positive result for C suggests that the detailed shape of the aerosol-scattering phase function is not relevant to the atmospheric correction of ocean color sensors. The relevant parameters are the aerosol single-scattering albedo and the spectral variation of the aerosol optical depth. We argue that the assumption of aerosol sphericity should not restrict the validity of the algorithm and suggest an avenue for including colored aerosols, e.g., wind-blown dust, in the procedure. A significant advantage of the new approach is that realistic multicomponent aerosol models are not required for the retrieval of C.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(330.1690) Vision, color, and visual optics : Color

History
Original Manuscript: January 6, 1998
Revised Manuscript: April 10, 1998
Published: August 20, 1998

Citation
Roman M. Chomko and Howard R. Gordon, "Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption," Appl. Opt. 37, 5560-5572 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980). [CrossRef] [PubMed]
  2. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Y. E. Sayed, B. Strum, R. C. Wrigley, C. S. Yentsch, “Nimbus 7 coastal zone color scanner: system description and initial imagery,” Science 210, 60–63 (1980). [CrossRef] [PubMed]
  3. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: a Review (Springer-Verlag, New York, 1983). [CrossRef]
  4. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: an Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1992), Vol. 1.
  5. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Geosci. Remote Sensing 27, 145–152 (1989). [CrossRef]
  6. H. R. Gordon, “Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations,” Appl. Opt. 15, 1974–1979 (1976). [CrossRef] [PubMed]
  7. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978). [CrossRef] [PubMed]
  8. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  9. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  10. H. R. Gordon, “Atmospheric correction of ocean color imagery in the earth observing system era,” J. Geophys. Res. D 102, 17,081–17,106 (1997). [CrossRef]
  11. H. R. Gordon, T. Du, T. Zhang, “Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption,” Appl. Opt. 36, 8670–8684 (1997). [CrossRef]
  12. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Airforce Base, Mass., 1979).
  13. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. D 93, 10,909–10,924 (1988). [CrossRef]
  14. F. Zhao, T. Nakajima, “Simultaneous determination of water-leaving reflectance and aerosol optical thickness from Coastal Zone Color Scanner measurements,” Appl. Opt. 36, 6949–6956 (1997). [CrossRef]
  15. C. Junge, “Atmospheric chemistry,” Adv. Geophys. 4, 1–108 (1958). [CrossRef]
  16. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  17. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef] [PubMed]
  18. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  19. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  20. A. Morel, K. J. Voss, B. Gentili, “Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields,” J. Geophys. Res. C 100, 13,143–13,150 (1995). [CrossRef]
  21. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]
  22. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1970).
  23. R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1980), Vols. 1 and 2.
  24. P. E. Gill, W. Murray, “Quasi-Newton methods for uncostrained optimization,” J. Inst. Maths. Its Appl. 9, 91–108 (1972). [CrossRef]
  25. M. J. D. Powell, “Some global convergence properties of a variable metric algorithm for minimization without exact line searches,” AERE Harwell Rep. CSS15 (Atomic Energy Research Establishment, Harwell, Oxfordshire, UK, 1975).
  26. International Mathematical & Statistical Library, Reference Manual (IMSL Inc., Houston, Texas, 1982), Vol. 4.
  27. M. Wang, H. R. Gordon, “Estimating aerosol optical properties over the oceans with the multiangle imaging spectroradiometer: some preliminary studies,” Appl. Opt. 33, 4042–4057 (1994). [CrossRef] [PubMed]
  28. H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sensing Environ. 63, 265–278 (1998). [CrossRef]
  29. M. I. Mishchenko, L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994). [CrossRef] [PubMed]
  30. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented spheroids,” J. Geophys. Res. D 102, 16,831–16,847 (1997). [CrossRef]
  31. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited