OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5560–5572

Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption

Roman M. Chomko and Howard R. Gordon  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5560-5572 (1998)
http://dx.doi.org/10.1364/AO.37.005560


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When strongly absorbing aerosols are present in the atmosphere, the usual two-step procedure of processing ocean color data—(1) atmospheric correction to provide the water-leaving reflectance (ρ w ), followed by (2) relating ρ w to the water constituents—fails and simultaneous estimation of the ocean and aerosol optical properties is necessary. We explore the efficacy of using a simple model of the aerosol—a Junge power-law size distribution consisting of homogeneous spheres with arbitrary refractive index—in a nonlinear optimization procedure for estimating the relevant oceanic and atmospheric parameters for case 1 waters. Using simulated test data generated from more realistic aerosol size distributions (sums of log-normally distributed components with different compositions), we show that the ocean’s pigment concentration (C) can be retrieved with good accuracy in the presence of weakly or strongly absorbing aerosols. However, because of significant differences in the scattering phase functions for the test and power-law distributions, large error is possible in the estimate of the aerosol optical thickness. The positive result for C suggests that the detailed shape of the aerosol-scattering phase function is not relevant to the atmospheric correction of ocean color sensors. The relevant parameters are the aerosol single-scattering albedo and the spectral variation of the aerosol optical depth. We argue that the assumption of aerosol sphericity should not restrict the validity of the algorithm and suggest an avenue for including colored aerosols, e.g., wind-blown dust, in the procedure. A significant advantage of the new approach is that realistic multicomponent aerosol models are not required for the retrieval of C.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(330.1690) Vision, color, and visual optics : Color

History
Original Manuscript: January 6, 1998
Revised Manuscript: April 10, 1998
Published: August 20, 1998

Citation
Roman M. Chomko and Howard R. Gordon, "Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption," Appl. Opt. 37, 5560-5572 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5560

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited