OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5605–5619

Mode-Field Diameter of Single-Mode Optical Fiber by Far-Field Scanning

Matt Young  »View Author Affiliations

Applied Optics, Vol. 37, Issue 24, pp. 5605-5619 (1998)

View Full Text Article

Acrobat PDF (268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I use the direct far-field method to measure the mode-field diameter of a single-mode fiber with an expanded uncertainty of 30 nm, with a coverage factor of 2. For a step-index fiber with a mode-field diameter of approximately 9 μm, the major sources of uncertainty are nonlinearity in the electronics, angular errors and scattered light in the apparatus, and the polarization and noncircularity of the mode of the fiber. The paper concludes by showing an inconsistency in the derivation of the far-field expression for mode-field diameter.

© 1998 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing

Matt Young, "Mode-Field Diameter of Single-Mode Optical Fiber by Far-Field Scanning," Appl. Opt. 37, 5605-5619 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Anonymous, “Measurement of mode field diameter of single-mode optical fiber,” Fiberoptic Test Procedure FOTP-191, Telecommunications Industry Association, 2500 Wilson Blvd., Suite 300, Arlington, Va. 22201–3834 (1998).
  2. K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibres,” Electron. Lett. 19, 712–714 (1983); C. Pask, “Physical interpretation of Petermann’s strange spot size for single-mode fibres,” Electron. Lett. 20, 144–145 (1984).
  3. M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
  4. D. L. Franzen, M. Young, A. H. Cherin, E. D. Head, M. J. Hackert, K. W. Raine, and J. G. N. Baines, “Numerical aperture of multimode fibers by several methods: resolving differences,” J. Lightwave Technol. 7, 896–900 (1989); E. M. Kim and D. L. Franzen, “Measurement of far-field radiation patterns from optical fibers,” in Optical Fiber Characterization, G. E. Chamberlain, G. W. Day, D. L. Franzen, E. M. Kim, and M. Young, eds. Natl. Bur. Stand. (U.S.) Spec. Publ. 637 (U.S. GPO, Washington, D.C., 1983), Vol. 2, Chap. 4.
  5. M. Young, Optics and Lasers, including Fibers and Optical Waveguides, 4th ed. (Springer, New York, 1993), Sec. 5.5.4; see also M. Young, “The pinhole camera,” Phys. Teacher 27, 648–655 (1989); “Pinhole optics,” Appl. Opt. 10, 2763–2767 (1971).
  6. M. Young, Optics and Lasers, including Fibers and Optical Waveguides, 4th ed. (Springer, New York, 1993), Chap. 4, especially Eqs. (4.2), (4.3), and (4.22).
  7. M. Young, “Can you describe optical surface quality with one or two numbers?,” in Optical Specifications: Components and Systems, W. J. Smith and R. E. Fischer, eds., Proc. SPIE 406, 12–22 (1983).
  8. T. J. Drapela, D. L. Franzen, A. H. Cherin, and R. J. Smith, “A comparison of far-field methods for determining mode field diameter of single-mode fibers using both Gaussian and Petermann definitions,” J. Lightwave Technol. 7, 1153–1157 (1989).
  9. Anonymous, Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Case postale 56, CH-1211, Genève 20, Switzerland, 1993).
  10. J. W. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 266–272.
  11. P. S. Lovely and C. S. Shaar, “Systematic errors in measurement of mode field diameter,” in Fiber Optic Networks & Coherent Technology in Fiber Optic Systems II, J. D. Chipman and H. R. D. Sunak, eds., Proc. SPIE 841, 240–247 (1987).
  12. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes in C (Cambridge U. Press, New York, 1992), Chap. 4.
  13. Ref. 10, Chap. 3.
  14. W. T. Anderson, V. Shah, L. Curtis, A. J. Johnson, and J. P. Kilmer, “Mode-field diameter measurements for single-mode fibers with non-Gaussian field profiles,” J. Lightwave Technol. LT-5, 211–217 (1987).
  15. K. Enslein, A. Ralston, and H. S. Wilf, Statistical Methods for Digital Computer (Wiley, New York, 1977).
  16. A. H. Cherin, An Introduction to Optical Fibers (McGraw-Hill, New York, 1983), Sect. 5–2.
  17. M. Young, “Optical fiber index profiles by the refracted-ray method,” Appl. Opt. 20, 3415–3422 (1981).
  18. A. B. Sharma, S. J. Halme, and M. M. Butusov, Optical Fiber Systems and Their Components (Springer, New York, 1981), Sec. 3.4.
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968); M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  20. M. Young and R. C. Wittmann, “Vector theory of diffraction by a single-mode fiber: application to mode-field diameter measurements,” Opt. Lett. 18, 1715–1717 (1993).
  21. A. Sommerfeld, Optics: Lectures on Theoretical Physics (Academic, New York, 1964), Vol. 4, Sec. 34.
  22. R. C. Wittmann and M. Young, “Are the formulas for mode-field diameter correct?,” submitted to the Symposium on Optical Fiber Measurements, Boulder, Colo., 15–17 September 1998.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited