OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5687–5693

Signal Extraction in a Power-Recycled Michelson Interferometer with Fabry-Perot Arm Cavities by Use of a Multiple-Carrier Frontal Modulation Scheme

Daniel Sigg, Nergis Mavalvala, Joseph Giaime, Peter Fritschel, and David Shoemaker  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5687-5693 (1998)
http://dx.doi.org/10.1364/AO.37.005687


View Full Text Article

Acrobat PDF (181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a signal extraction scheme for longitudinal sensing and control of an interferometric gravitational-wave detector based on a multiple-frequency heterodyne detection technique. Gravitational-wave detectors use multiple-mirror resonant optical systems where resonance conditions must be satisfied for multiple degrees of freedom that are optically coupled. The multiple-carrier longitudinal-sensing technique provides sensitive signals for all interferometric lengths to be controlled and successfully decouples them. The feasibility of the technique is demonstrated on a tabletop-scale power-recycled Michelson interferometer with Fabry–Perot arm cavities, and the experimentally measured values of the length-sensing signals are in good agreement with theoretical calculations.

© 1998 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4090) Medical optics and biotechnology : Modulation techniques

Citation
Daniel Sigg, Nergis Mavalvala, Joseph Giaime, Peter Fritschel, and David Shoemaker, "Signal Extraction in a Power-Recycled Michelson Interferometer with Fabry-Perot Arm Cavities by Use of a Multiple-Carrier Frontal Modulation Scheme," Appl. Opt. 37, 5687-5693 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5687


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. See, for example, K. S. Thorne, “Gravitational radiation,” in 300 Years of Gravitation, S. W. Hawking and W. Israel, eds. (Cambridge U. Press, Cambridge, UK, 1987), pp. 330–458.
  2. F. J. Raab, “The LIGO project: progress and prospects,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pixella, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 70–85.
  3. A. Giazotto, “The VIRGO experiment: status of the art,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pixella, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 86–99.
  4. K. Danzmann, “GEO600—600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pixell, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 100–111.
  5. K. Tsubono, “300 m laser interferometric gravitational wave detector (TAMA300) in Japan,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pixella, and F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 112–114.
  6. R. Weiss, “Electromagnetically coupled broadband gravitational antenna,” MIT Res. Lab. Electron. Q. Prog. Rep. 105, 54–76 (1972).
  7. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-wave Observatory,” Science 256, 325–333 (1992).
  8. R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook III, and Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities,” in Quantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–524.
  9. H. Billing, K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp, and W. Winkler, “The Munich Gravitational Wave Detector using laser interferometry,” in Quantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983), pp. 525–566.
  10. D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, and K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
  11. A. Schenzle, R. DeVoe, and G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621 (1982).
  12. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
  13. L. Schnupp, Max Planck Institute for Quantum Optics, D-85748 Garching, Germany (personal communication, 1986).
  14. M. W. Regehr, F. J. Raab, and S. E. Whitcomb, “Demonstration of a power-recycled Michelson interferometer with Fabry–Perot arms by frontal modulation,” Opt. Lett. 20, 1507–1509 (1995).
  15. A. Giaime, “Studies of laser interferometric design and a vibration isolation system for interferometric gravitational wave detectors,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1995).
  16. N. Mavalvala, “Alignment issues in laser interferometric gravitational-wave detectors,” Ph.D. dissertation (Massachu-setts Institute of Technology, Cambridge, Mass., 1997), p. 23.
  17. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 423.
  18. Y. Hefetz, N. Mavalvala, and D. Sigg, “Principles of calculating alignment signals in complex resonant optical interferometers,” J. Opt. Soc. Am. B 14, 1597–1605 (1997).
  19. N. Mavalvala, D. Sigg, and D. Shoemaker, “Experimental test of an alignment sensing scheme for a gravitational-wave interferometer,” Appl. Opt. (to be published).
  20. C. N. Man, D. Shoemaker, M. Pham Tu, and D. Dewey, “External modulation technique for sensitive interferometric detection of displacements,” Phys. Lett. A 148, 8–16 (1990).
  21. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited