OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5713–5719

Efficient 946-nm laser operation of a composite Nd:YAG rod with undoped ends

Masaki Tsunekane, Noboru Taguchi, and Humio Inaba  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5713-5719 (1998)
http://dx.doi.org/10.1364/AO.37.005713


View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present comparative studies on laser performance of diode end-pumped, composite Nd:YAG rods with undoped ends at 946 nm. Efficient heat removal in a composite rod can reduce the peak of rise in temperature in the active segment to 61% by theoretical calculation. The maximum, continuous-wave output power of 1.5 W, which is three times higher than a conventional noncomposite rod, was obtained at an absorbed pump power of 8 W because of the 55 deg reduction in temperature rise that was estimated experimentally. The performance and characteristics of composite rods in quasi-three-level laser operation are analyzed and discussed in detail, taking into account the reduction in reabsorption loss, which is strongly temperature dependent.

© 1998 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.0140) Lasers and laser optics : Lasers and laser optics

History
Original Manuscript: January 5, 1998
Revised Manuscript: March 30, 1998
Published: August 20, 1998

Citation
Masaki Tsunekane, Noboru Taguchi, and Humio Inaba, "Efficient 946-nm laser operation of a composite Nd:YAG rod with undoped ends," Appl. Opt. 37, 5713-5719 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5713

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited