OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5755–5759

Fiber-Coupled High-Power External-Cavity Semiconductor Lasers for Real-Time Raman Sensing

Ming-Wei Pan, George R. Gray, Lee M. Smith, Robert E. Benner, Carl W. Johnson, and Daniel D. Knowlton  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5755-5759 (1998)
http://dx.doi.org/10.1364/AO.37.005755


View Full Text Article

Acrobat PDF (258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-power, external-cavity semiconductor lasers with narrow bandwidth and fiber-coupled output are designed and constructed. An output power of 540 mW is coupled out of a 100-μm multimode fiber with coupling efficiency of 72% when the laser is operated at 1.1 A. The emission linewidth is as narrow as 22 GHz, and the wavelength is tunable from 779.7 to 793.0 nm. Application of such lasers to remote real-time Raman sensing of materials is also demonstrated.

© 1998 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(230.6080) Optical devices : Sources
(300.0300) Spectroscopy : Spectroscopy
(300.6450) Spectroscopy : Spectroscopy, Raman

Citation
Ming-Wei Pan, George R. Gray, Lee M. Smith, Robert E. Benner, Carl W. Johnson, and Daniel D. Knowlton, "Fiber-Coupled High-Power External-Cavity Semiconductor Lasers for Real-Time Raman Sensing," Appl. Opt. 37, 5755-5759 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5755


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. 8, 632–641 (1972).
  2. W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
  3. J. R. Andrews and G. L. Schuster, “High-power and high-spatial-coherence broad-area power amplifier,” Opt. Lett. 16, 913–915 (1991).
  4. J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
  5. J. R. Marciante and G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
  6. Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
  7. P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
  8. C. D. Allred and R. L. McCreery, “Near-infrared Raman spectroscopy of liquids and solids with a fiber-optic sampler, diode lasers, and CCD detector,” Appl. Spectrosc. 44, 1229–1231 (1990).
  9. C. D. Newman, G. G. Bret, and R. L. McCreery, “Fiber-optic sampling combined with an imaging spectrograph for routine Raman spectroscopy,” Appl. Spectrosc. 46, 262–265 (1992).
  10. S. M. Angel, T. F. Cooney, and H. T. Skinner, “Evaluation of the performance of laser sources and fiber optic probes for in-situ Raman measurements,” in Environmental Monitoring and Hazardous Waste Site Remediation, Tuan ed., Proc. Vo-Dinh, ed., Proc. SPIE 2504, 40–51 (1995).
  11. D. Mehuys and D. Evans, “High-power diode lasers tune into diverse applications,” Laser Focus World 31(5), 117–121 (1995).
  12. M. M. Carrabba, K. M. Spencer, and R. D. Rauh, “Compact Raman instrumentation for process and environmental monitoring,” in Environmental Sensing and Combustion Diagnos-tics, J. J. Santoeri, ed., Proc. SPIE 1434, 127–134 (1991).
  13. B. Chase, “A new generation of Raman instrumentation,” Appl. Spectrosc. 48, 14A–19A (1994).
  14. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), Chap. 8.
  15. L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, and R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application 1998.
  16. T. F. Cooney, H. T. Skinner, and S. M. Angle, “Evaluation of external-cavity diode laser for Raman spectroscopy,” Appl. Spectrosc. 49, 1846–1851 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited