OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 25 — Sep. 1, 1998
  • pp: 5985–5992

Backscatter Linear and Circular Polarization Analysis of Roughened Aluminum

Gareth D. Lewis, David L. Jordan, and Eric Jakeman  »View Author Affiliations

Applied Optics, Vol. 37, Issue 25, pp. 5985-5992 (1998)

View Full Text Article

Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A study of cross-polarized and copolarized intensities backscattered from roughened aluminum surfaces is presented for both linear and circular incident polarization states. The angular variation of measured Mueller matrices is shown to contain only diagonal elements, as predicted by the reciprocity theorem. The ratio of cross-depolarized to copolarized scattered intensities is significantly larger for circular than for linear input polarization states. In the linear case the ratio saturates beyond 50°, whereas in the circular case the ratio continues to increase monotonically with angle. A phenomenological model for copolarization and cross-polarization intensities is shown to predict the observed behavior of both linear and circular input polarization states up to incident angles of 70°.

© 1998 Optical Society of America

OCIS Codes
(240.6700) Optics at surfaces : Surfaces
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering

Gareth D. Lewis, David L. Jordan, and Eric Jakeman, "Backscatter Linear and Circular Polarization Analysis of Roughened Aluminum," Appl. Opt. 37, 5985-5992 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  2. E. I. Thorsos and D. R. Jackson, “Studies of scattering theory using numerical methods,” Waves Random Media 3, 5165–5190 (1991).
  3. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).
  4. K. A. O’Donnell and M. E. Knotts, “Polarization-dependence of scattering from one-dimensional rough surfaces,” J. Opt. Soc. Am. A 8, 1126–1131 (1991).
  5. T. R. Michel, M. E. Knotts, and K. A. O’Donnell, “Stokes matrix of a one-dimensional perfectly conducting rough surface,” J. Opt. Soc. Am. A 9, 585–596 (1992).
  6. M. E. Knotts, T. R. Michel, and K. A. O’Donnell, “Comparisons of theory and experiment in light scattering from a randomly rough surface,” J. Opt. Soc. Am. A 10, 928–941 (1993).
  7. M. E. Knotts and K. A. O’Donnell, “Measurements of light scattering by a series of conducting surfaces with one-dimensional roughness,” J. Opt. Soc. Am. A 11, 697–709 (1994).
  8. J. Cariou, B. Le. Jeune, J. Lotrian, and Y. Guern, “Polarization effects of seawater and underwater targets,” Appl. Opt. 29, 1689–1695 (1990).
  9. K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from characterized random surfaces,” J. Opt. Soc. Am. A 4, 1194–1205 (1987).
  10. E. R. Mendez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
  11. D. L. Jordan and F. Moreno, “Enhanced backscattering and cross depolarization from multiscale surfaces,” J. Opt. Soc. Am. A 10, 1989–1995 (1993).
  12. D. L. Knepp and H. L. Houpis, “Altair VHF/UHF observations of multipath and backscatter enhancement,” IEEE Trans. Antennas Propag. 39, 528–534 (1991).
  13. P. Phu, A. Ishimaru, and Y. Kuga, “Copolarized and cross-polarized enhanced backscattering from two-dimensional very rough surfaces at millimeter wave frequencies,” Radio Sci. 29, 1275–1291 (1994).
  14. A. Ishimaru, “Backscattering enhancement from radar cross-sections to electrons and light localizations to rough surface scattering,” IEEE Antennas Propag. Mag. 33, 7–11 (1991).
  15. E. Jakeman, “Scattering by particles on an interface,” Appl. Phys. 27, 198–210 (1994).
  16. J. E. Geake, M. Geake, and B. H. Zellner, “Experiments to test theoretical models of the polarization of light by rough surfaces,” Mon. Notes R. Astron. Soc. 210, 89–112 (1984).
  17. M. W. Long, “On the polarization and the wavelength dependence of sea echo,” IEEE Trans. Antennas Propag. AP-13, 749–754 (1965).
  18. H. Goldstein, “Sea Echo,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (Peregrinus, London, 1987), Chap. 7.
  19. E. Jakeman, “A particle model for scattering by two-scale rough surfaces,” in Progress in Electromagnetics Research Symposium (PIERS) (Kluwer/Academic, Dordrecht, The Netherlands, 1994, CD-ROM).
  20. E. Collett, Polarized Light: Fundamentals and Applications (Dekker, New York, 1993), pp. 103–106.
  21. W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53, 468–478 (1985).
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 132.
  23. D. L. Jordan, G. D. Lewis, and E. Jakeman, “Emission polarization of roughened glass and aluminum surfaces,” Appl. Opt. 35, 3583–3589 (1996).
  24. G. D. Lewis and D. L. Jordan, “Backscattering Mueller matrices from bead-blasted aluminum surfaces,” in Polarization: Measurement, Analysis, and Remote Sensing, R. A. Chipman, ed., Proc SPIE 3121, 434–443 (1997).
  25. S. R. Cloude, “The physical interpretation of eigenvalue problems in optical scattering polarimetry,” in Polarization: Measurement, Analysis, and Remote Sensing, R. A. Chipman, ed., Proc. SPIE 3121, 88–99 (1997).
  26. M. Pitter, E. Jakeman, and M. Harris, “Heterodyne detection of enhanced backscatter,” Opt. Lett. 22, 393–395 (1997).
  27. D. L. Jordan, “Experimental measurements of optical backscattering from surfaces of roughness comparable to the wavelength and their application to radar sea scattering,” Waves Random Media 5, 41–54 (1995).
  28. J. Renau, P. K. Cheo, and H. G. Cooper, “Depolarization of linearly polarized EM waves backscattered from rough metals and inhomogeneous dielectrics,” J. Opt. Soc. Am. 58, 459–466 (1967).
  29. J. V. Evans and T. Hagfors, “Study of radio echoes from the Moon at 23 centimetres wavelength,” J. Geophys. Res. 71, 4871–4889 (1966).
  30. G. Videen, W. L. Wolfe, and W. S. Bickel, “Light scattering Mueller matrix for a surface contaminated by a single particle in the Rayleigh limit,” Opt. Eng. 31, 341–343 (1992).
  31. D. L. Jordan, R. C. Hollins, and E. Jakeman, “Experimental measurements of non-Gaussian scattering by a fractal diffuser,” Appl. Phys. B 31, 179–186 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited