OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 25 — Sep. 1, 1998
  • pp: 5993–6001

Optical Constants of Sputter-Deposited Ti-Ce Oxide and Zr-Ce Oxide Films

Monica Veszelei, Lisen Kullman, Claes G. Granqvist, Nik von Rottkay, and Mike Rubin  »View Author Affiliations


Applied Optics, Vol. 37, Issue 25, pp. 5993-6001 (1998)
http://dx.doi.org/10.1364/AO.37.005993


View Full Text Article

Acrobat PDF (179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Films of Ti oxide, Zr oxide, Ce oxide, Ti-Ce oxide, and Zr-Ce oxide were made by means of reactive dc magnetron sputtering in a multitarget arrangement. The films were characterized by x-ray diffraction and electrochemical measurements, both techniques being firmly connected to stoichiometric information. The optical constants <i>n</i> and <i>k</i> were evalued from spectrophotometry and from variable-angle spectroscopic ellipsometry. The two analyses gave consistent results. It was found that <i>n</i> for the mixed-oxide films varied smoothly between the values for the pure oxides, whereas <i>k</i> in the band-gap range showed characteristic differences between Ti-Ce oxide and Zr-Ce oxide. It is speculated that this difference is associated with structural effects.

© 1998 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(310.0310) Thin films : Thin films

Citation
Monica Veszelei, Lisen Kullman, Claes G. Granqvist, Nik von Rottkay, and Mike Rubin, "Optical Constants of Sputter-Deposited Ti-Ce Oxide and Zr-Ce Oxide Films," Appl. Opt. 37, 5993-6001 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-25-5993


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).
  2. M. Strømme Mattsson, A. Azens, G. A. Niklasson, C. G. Granqvist, and J. Purans, “Li intercalation in transparent Ti-Ce oxide films: energetics and ion dynamics,” J. Appl. Phys. 81, 6432–6437 (1997).
  3. D. D. Koelling, A. M. Boring, and J. H. Wood, “The electronic structure of CeO2 and PrO2,” Solid State Commun. 47, 227–232 (1983).
  4. S.-Y. Zheng, A. M. Andersson, B. Stjerna, and C. G. Granqvist, “Optical properties of sputter-deposited cerium oxyfluoride thin films,” Appl. Opt. 32, 6303–6309 (1993).
  5. P. Schlotter, G. Baur, R. Schmidt, and U. Weinberg, “Laminated electrochromic device for smart windows,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, and C. M. Lampert, eds., Proc. SPIE 2255, 351–362 (1994).
  6. D. Camino, D. Deroo, J. Salardenne, and N. Treuil, “(CeO2)x − (TiO2)1−x: counter electrode materials for lithium electrochromic devices,” Solar Energy Mater. Solar Cells 39, 349–366 (1995).
  7. A. Azens, L. Kullman, D. D. Ragan, C. G. Granqvist, B. Hjörvarsson, and G. Vaivars, “Optical and electrochemical properties of dc magnetron sputtered Ti-Ce oxide films,” Appl. Phys. Lett. 68, 3701–3703 (1996).
  8. L. Kullman, M. Veszelei, D. D. Ragan, J. Isidorsson, G. Vaivars, U. Kanders, A. Azens, S. Schelle, B. Hjörvarsson, and C. G. Granqvist, “Cerium-containing counter electrodes for transparent electrochromic devices,” in Optical Organic and Semiconductor Inorganic Materials, E. A. Silinsh, A. Medvid, A. R. Lusis, and A. O. Ozols, eds., Proc. SPIE 2968, 219–224 (1997).
  9. A. Azens, L. Kullman, D. D. Ragan, M. Strømme Mattsson, and C. G. Granqvist, “Electrochromic properties of Ti-Ce oxides: the effect of varying stoichiometry,” in Electrochromic Materials III, K.-C. Ho, C. B. Greenberg, and D. M. MacArthur, eds., Electrochem. Soc. Proc. 96–24, 218–228 (1997).
  10. L. Kullman, A. Azens, and C. G. Granqvist, “Decreased electrochromism in Li-intercalated Ti oxide films containing La, Ce, and Pr,” J. Appl. Phys. 81, 8002–8010 (1997).
  11. M. Veszelei, L. Kullman, A. Azens, C. G. Granqvist, and B. Hjörvarsson, “Transparent ion intercalation films of Zr-Ce oxide,” J. Appl. Phys. 81, 2024–2026 (1997).
  12. M. Veszelei, L. Kullman, M. Strømme Mattsson, A. Azens, and C. G. Granqvist, “Optical and electrochemical properties of Li+ intercalated Zr-Ce oxide and Hf-Ce oxide films,” J. Appl. Phys. 83, 1670–1676 (1998).
  13. S. Oliveira, R. C. Faria, A.-J. Terezo, E. C. Pereira, and L. O. S. Bulhões, “The cerium addition effect on the electrochemical properties of niobium pentoxide electrochromic thin films,” in Electrochromic Materials III, K.-C. Ho, C. B. Greenberg, and D. M. MacArthur, eds., Electrochem. Soc. Proc. 96–24, 106–118 (1997).
  14. M. Kharrazi, A. Azens, L. Kullman, and C. G. Granqvist, “High-rate dual-target dc magnetron sputter deposition of electrochromic MoO3 oxide,” Thin Solid Films 295, 117–121 (1997); M. Kharrazi Olsson, L. Kullman, and C. G. Granqvist, “High-rate dual-target dc magnetron sputtering of blue electrochromic Mo oxide,” Thin Solid Films (to be published).
  15. D. Le Bellac, G. A. Niklasson, and C. G. Granqvist, “Angular-selective optical transmittance of anisotropic inhomogeneous Cr-based films made by sputtering,” J. Appl. Phys. 77, 6145–6151 (1995).
  16. M. Kharrazi Olsson, K. Macák, U. Helmersson, and B. Hjörvarsson, “High rate reactive dc magnetron sputter deposition of Al2O3 films,” J. Vac. Sci. Technol. A 16, 639–643 (1998).
  17. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123–R159 (1986).
  18. D.-J. Kim, “Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+),” J. Am. Ceram. Soc. 72, 1415–1421 (1989).
  19. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A 32, 751–767 (1976).
  20. D. Rönnow, L. Kullman, and C. G. Granqvist, “Spectroscopic light scattering from electrochromic tungsten-oxide-based films,” J. Appl. Phys. 80, 423–430 (1996).
  21. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  22. A. R. Forouhi and I. Bloomer, “Calculation of optical constants, n and k, in the interband region,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), Chap. 7, pp. 151–175.
  23. G. E. Jellison, Jr., and F. A. Modine, “Parametrization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996); Appl. Phys. Lett. 69, 2137 (erratum).
  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989).
  25. K. von Rottkay, T. Richardson, M. Rubin, J. Slack, and E. Masetti, “Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, C. M. Lampert, C. G. Granqvist, M. Grätzel, and S. K. Deb, eds., Proc. SPIE 3138, 9–19 (1997).
  26. C. Herzinger and B. Johs, “Guide to using WVASE32” (J. A. Woollam Co., Lincoln, Neb., 1996), p. 347.
  27. C. C. Kim, J. W. Garland, H. Abad, and P. M. Raccah, “Modeling of the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11749–11756 (1992).
  28. X.-F. He, “Interband critical-point line shapes in confined semiconductor structures with arbitrary dimensionality: inhomogeneous broadening,” J. Opt. Soc. Am. B. 14, 17–20 (1997).
  29. K. von Rottkay, M. Rubin, and S.-J. Wen, “Optical indices of electrochromic tungsten oxide,” Thin Solid Films 306, 10–16 (1997).
  30. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, and T. F. Thonn, “Multiple determination of the optical constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
  31. R. P. Netterfield, W. G. Sainty, P. J. Martin, and S. H. Sie, “Properties of CeO2 thin films prepared by oxygen-ion-assisted deposition,” Appl. Opt. 24, 2267–2272 (1985).
  32. M. S. Al-Robaee, M. Ghanashyam Krishna, K. Narasimha Rao, and S. Mohan, “Optical properties of ion assisted deposited CeO2 films,” J. Vac. Sci. Technol. A 9, 3048–3053 (1991).
  33. K. Bange, C. R. Ottermann, O. Anderson, and U. Jeschkowski, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
  34. H. K. Pulker, G. Paesold, and E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases,” Appl. Opt. 15, 2986–2991 (1976).
  35. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Sazer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
  36. M. Swarnalatha, A. F. Stewart, A. H. Guenther, and C. K. Carniglia, “Optical and structural properties of thin films deposited from laser fused zirconia, hafnia, and yttria,” Appl. Phys. A 54, 533–537 (1992).
  37. J. A. Dobrowolski, P. D. Grant, R. Simpson, and A. J. Waldorf, “Investigation of the evaporation process conditions on the optical constants of zirconia films,” Appl. Opt. 28, 3997–4005 (1989).
  38. H. J. Cho and C. K. Hwangbo, “Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition,” Appl. Opt. 35, 5545–5552 (1996).
  39. M. Ghanashyam Krishna, K. Narasimha Rao, and S. Mohan, “Optical properties of ion assisted deposited zirconia thin films,” J. Vac. Sci. Technol. A 10, 3451–3455 (1992).
  40. M. Ghanashyam Krishna, K. Narasimha Rao, and S. Mohan, “A comparative study of the optical properties of zirconia thin films prepared by ion-assisted deposition,” Thin Solid Films 207, 248–251 (1992).
  41. M. H. Suhail, G. Mohan Rao, and S. Mohan, “Studies on the properties of zirconia films prepared by direct current reactive magnetron sputtering,” J. Vac. Sci. Technol. A 9, 2675–2677 (1991).
  42. M. H. Suhail, G. Mohan Rao, and S. Mohan, “Effect of substrate temperature on the properties of ZrO2 films prepared by dc reactive magnetron sputtering,” Mater. Sci. Eng. B12, 247–252 (1992).
  43. S. Guo, H. Arwin, S. N. Jacobsen, K. Järrendahl, and U. Helmersson, “A spectroscopic ellipsometry study of cerium dioxide thin films grown on sapphire by rf magnetron sputtering,” J. Appl. Phys. 77, 5369–5376 (1995).
  44. M. S. Al-Robaee, K. Narasimha Rao, and S. Mohan, “Influence of substrate temperature on the properties of oxygen-ion-assisted deposited CeO2 films,” J. Appl. Phys. 71, 2380–2386 (1992).
  45. Z. C. Orel and B. Orel, “Electrochemical and optical properties of sol-gel derived CeO2 and mixed CeO2/SnO2 coatings,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, and C. M. Lampert, eds., Proc. SPIE 2255, 285–296 (1994).
  46. Z. C. Orel and B. Orel, “Optical properties of pure CeO2 and mixed CeO2/SnO2 thin films coatings,” Phys. Status Solidi B 186, K33–K36 (1994).
  47. K. B. Sundaram and P. Wahid, “Optical absorption in cerium dioxide thin films,” Phys. Status Solidi B 161, K63–K66 (1990).
  48. C. A. Hogarth and Z. T. Al-Dhhan, “Optical absorption in thin films of cerium dioxide and cerium dioxide containing silicon monoxide,” Phys. Status Solidi B 137, K157–K160 (1986).
  49. W. I. Khleif, “Dielectric properties of thin films based on CeO2 and TeO2,” Ph.D. dissertation (Brunel University, Uxbridge, Middlesex, UK, 1989).
  50. C. Misiano and E. Simonetti, “Co-sputtered optical films,” Vaccum 27, 403–406 (1977).
  51. Z. T. Al-Dhhan, C. A. Hogarth, and N. Riddleston, “The optical absorption edge in thin amorphous oxide films based on cerium dioxide,” Phys. Status Solidi B 145, 145–149 (1988).
  52. J. A. Thornton, “High rate thick film growth,” Ann. Rev. Mater. Sci. 7, 239–260 (1977).
  53. G. Mbise, D. Le Bellac, G. A. Niklasson, and C. G. Granqvist, “Angular selective window coatings: theory and experiments,” J. Phys. D 30, 2103–2122 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited