OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 25 — Sep. 1, 1998
  • pp: 6011–6025

Optoelectronic Region of Interest Detection: An Application in Automated Cytology

Ramkumar Narayanswamy and Kristina M. Johnson  »View Author Affiliations


Applied Optics, Vol. 37, Issue 25, pp. 6011-6025 (1998)
http://dx.doi.org/10.1364/AO.37.006011


View Full Text Article

Acrobat PDF (3041 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diagnostic cytology, which is used to screen for cervical cancer, involves characterizing cellular features such as shape, size, and texture. Automated screening of cervical smear slides is desirable but computationally challenging since each slide requires processing 2 × 109 pixels at a resolution of 0.8 μm per pixel. We demonstrate that the throughput of optical processors can be exploited in automated cervical smear-screening systems. In particular, we identify a morphological shape detector to perform the initial region of interest (ROI) detection and to demonstrate experimentally its optoelectronic implementation. The ROI detector is tested on 200 images, and its performance is characterized as a receiver operating characteristic (ROC). The area under the ROC curve is as high as 96.4% of the total area. The simulation and the experimental results are found comparable, and the discrepancy between the two results is determined to be a function of the number of bits represented in the filter plane device.

© 1998 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(250.0250) Optoelectronics : Optoelectronics

Citation
Ramkumar Narayanswamy and Kristina M. Johnson, "Optoelectronic Region of Interest Detection: An Application in Automated Cytology," Appl. Opt. 37, 6011-6025 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-25-6011


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Bolden, P. A. Wingo, and T. Tong, “Cancer statistics,” Ca- A cancer journal for clinicians 45, 8–30 (1995).
  2. J. D. Sherris, E. S. Wells, V. Davis Tsu, and A. Bishop, “Cervical cancer in developing countries: a situation analysis,” in Program for Appropriate Technology in Health (PATH) (The World Bank Department of Population, Health and Nutrition, Seattle, Wash., 1993).
  3. G. L. Wied, G. F. Bahr, M. Bibbo, J. H. Puls, J. Taylor, and P. H. Bartels, “The TICAS-RTCIP real time cell identification processor,” Acta Cytol. 19, 286–288 (1975).
  4. G. Abmayr, G. Burger, and H. J. Soost, “Progress report of the TUDAB project for automated cancer cell detection,” J. Histochem. Cytochem. 27, 604–612 (1979).
  5. N. Tanaka, H. Ikeda, T. Ueno, A. Mukawa, S. Watanabe, K. Okamoto, S. Hosoi, and S. Tsunekawa, “Automated cytologic screening system (CYBEST model 4): an integrated image cytometry system,” Appl. Opt. 26, 3301–3307 (1987).
  6. J. H. Tucker, “CERVISCAN: an image analysis system for experiments in automatic cervical smear prescreening,” Comput. Biomed. Res. 9, 93–107 (1976).
  7. D. Pycock and C. J. Taylor, “The Magiscan image analyser as a diagnostic aid in cytology,” Anal. Quantitative Cytol. 3, 49–54 (1981).
  8. K. D. Kunze, W. R. Herrmann, and R. Meyer, “The ZYPAB image-processing system for cytologic prescreening for cervical cancer,” Anal. Quantitative Cytol. 2, 252–256 (1980).
  9. J. Vrolijk, P. L. Pearson, and J. S. Ploem, “LEYTAS: a system for the processing of microscopic images,” Anal. Quantitative Cytol. 2, 41–48 (1980).
  10. D. J. Zahniser, P. S. Oud, M. C. T. Raaijmakers, G. P. Vooijs, and R. Y. Van de Walle, “BioPEPR: a system for the automatic prescreening of cervical smears,” J. Histochem. Cytochem. 27, 635–641 (1979).
  11. G. Brugal, C. Garbay, F. Giroud, and D. Adelh, “A double scanning microphotometer for image analysis: hardware, software and biomedical applications,” J. Histochem. Cytochem. 27, 144–153 (1979).
  12. J. Holmquist, D. Antonsson, E. Bengtsson, P.-E. Danielsson, O. Eriksson, T. Hedblom, A. Martensson, B. Nordin, T. Olsson, and B. Stenkvist, “The Uppsala-Linkoping image processing system,” Anal. Quantitative Cytol. 3, 182–194 (1981).
  13. Editorial Office of AQCH and IAC committee on Quantitative Morphology, “Data on automated cytology systems as submitted by their developers,” Anal. Quantitative Cytol. Histol. 13, 300–306 (1991).
  14. D. H. Grohs, “Challenges in cervical cancer screening: what clinicians, patients and the general public need to know,” Acta Cytol. 40, 133–137 (1996).
  15. M. Bibbo, P. H. Bartels, M. Chen, M. J. Harris, B. Truttman, and G. L. Wied, “The numerical composition of cellular samples from the female reproductive tract. I. Carcinoma in situ,” Acta Cytol. 19, 438–446 (1975).
  16. M. Bibbo, P. H. Bartels, M. Chen, M. J. Harris, B. Truttman, and G. L. Wied, “The numerical composition of cellular samples from the female reproductive tract. II. Cases with invasive squamous carcinoma of uterine cervix,” Acta Cytol. 20, 249–254 (1976).
  17. K. R. Castleman and B. S. White, “Optimizing cervical cell classifiers,” Anal. Quantitative Cytol. Histol. 2, 117–122 (1980).
  18. B. S. White and K. R. Castleman, “Estimating cell population,” Pattern Recog. Lett. 13, 365–370 (1981).
  19. K. R. Castleman, K. H. Price, and B. S. White, “Effects of random abnormal cell proportion on specimen classifier performance,” Cytometry 14, 1–8 (1993).
  20. O. A. N. Husain, J. H. Tucker, and B. A. P. Roberts, “Automation in cervical cancer screening 1. Fixed cell scanning systems,” Biomed. Eng. 11, 161–166 (1976).
  21. P. S. Oud, A. A. Hurley, and K. L. Douglass, “Sample preparation in diagnostic cytology: present status and new developments,” Diagn. Clin. Test. 28, 16–19 (1990).
  22. H.-J. Soost, H.-J. Lange, W. Lehmacher, and B. Ruffing-Kullmann, “The validation of cervical cytology: sensitivity, specificity and predictive values.” Acta Cytol. 35, 8–14 (1991).
  23. D. J. Zahniser, CYTYC Corporation, 85 Swanson Road, Boxborough, Mass. 01719 (personal communication, 1994).
  24. R. Narayanswamy, “Optoelectronic region of interest detection applied to automated cervical smear screening,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colo., 1996).
  25. J. Serra, “Introduction to mathematical morphology,” Comput. Vision. Graph. Image Process. 35, 283–305 (1986).
  26. T. R. Crimmins and W. M. Brown, “Image algebra and automatic shape recognition,” IEEE Trans. Aerosp. Electron. Syst. AES-21, 60–69 (1985).
  27. Cytyc Corporation, 85 Swanson Road, Boxborough, Mass. 01719.
  28. J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: a tutorial,” Proc. IEEE, 78, 826–855 (1990).
  29. U. Efron, Spatial Light Modulator Technology (Marcell Deker, New York, 1995).
  30. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775–2784 (1994).
  31. Boulder Nonlinear Systems Inc., 1898 S. Flatiron Court, Boulder, Colo. 80301.
  32. Melles Griot, Electro-optics Division, 4665 Nautilus Court South, Boulder, Colo. 80301–5303.
  33. D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
  34. University of Colorado, Optoelectronic Computing Systems Center, http://www-ocs.colorado.edu.
  35. D. J. McKnight, K. M. Johnson, and M. A. Follet, “Analog distorted helix ferroelectric liquid-crystal-on-silicon spatial light modulator,” Opt. Lett. 20, 513–515 (1995).
  36. Dalsa Inc., 605 McMurray Road, Waterloo, Ontario, N2V 2E9 Canada.
  37. K. S. O’Neill, and William T. Rhodes, “Morphological transformations by hybrid optical-electronic methods,” in Hybrid Image Processing, D. P. Casasent and A. G. Tescher, eds., Proc. SPIE 638, 44–44 (1986).
  38. J. Garcia, T. Szoplik, and C. Ferreira, “Optoelectronic morphological image processor,” Opt. Lett. 18, 1952–1954 (1993).
  39. J. M. Hereford and W. T. Rhodes, “Nonlinear optical image filtering by time-sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988).
  40. Y. Li, A. Kostrzewksi, D. H. Kim, and G. Eichmann, “Compact parallel real-time programmable optical morphological image processor,” Opt. Lett. 14, 981–983 (1989).
  41. J. N. Mait, D. W. Prather, and R. A. Athale, “Acousto-optic processing with electronic image feedback for morphological processing,” Appl. Opt. 31, 5688–5699 (1992).
  42. E. C. Botha, J. Richards, and D. P. Casasent, “Optical laboratory morphological inspection processor,” Appl. Opt. 28, 5342–5350 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited