OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 25 — Sep. 1, 1998
  • pp: 6037–6041

Distinguishability of biological material by use of ultraviolet multispectral fluorescence

Perry C. Gray, Isaac R. Shokair, Stephen E. Rosenthal, Gary C. Tisone, John S. Wagner, L. Douglas Rigdon, Gregory R. Siragusa, and Richard J. Heinen  »View Author Affiliations

Applied Optics, Vol. 37, Issue 25, pp. 6037-6041 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the UV fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically. As a practical example of this technique, we show its application to the analysis of UV fluorescence spectra taken of E. coli, S. aureus, and S. typhimurium. The use of this analysis to determine the degree of biological variability and also to verify that measurements are being made in a linear regime in which analytic methods such as multivariate analysis are valid is discussed.

© 1998 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(170.1580) Medical optics and biotechnology : Chemometrics
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

Original Manuscript: February 26, 1998
Revised Manuscript: April 17, 1998
Published: September 1, 1998

Perry C. Gray, Isaac R. Shokair, Stephen E. Rosenthal, Gary C. Tisone, John S. Wagner, L. Douglas Rigdon, Gregory R. Siragusa, and Richard J. Heinen, "Distinguishability of biological material by use of ultraviolet multispectral fluorescence," Appl. Opt. 37, 6037-6041 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. T. Hill, R. G. Pinnick, G. Chen, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34, 7149–7155 (1995). [CrossRef] [PubMed]
  2. B. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectros. 47, 436–440 (1993). [CrossRef]
  3. B. Bronk, L. Reinisch, P. Setlow, “UV fluorescence for sands of Saudi Arabia compared with typical microorganisms,” Wishful Research Result Rep. ERDEC-TR-079 (Edgewood Research, Development & Engineering Center, Aberdeen Proving Ground, Md. 21010–5423, 1993) (approved for public release; distribution is unlimited).
  4. A. Anders, “DNA fluorescence at room temperature by means of a dye laser,” Chem. Phys. Lett. 81, 270–272 (1981). [CrossRef]
  5. A. Anders, “Laser fluorescence spectroscopy of biomolecules: nucleic acids,” Opt. Eng. 22, 592–595 (1983). [CrossRef]
  6. P. Nachman, G. Chen, R. Pinnick, S. Hill, K. Chang, M. Mayo, G. Fernandez, “Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996). [CrossRef] [PubMed]
  7. O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992). [CrossRef]
  8. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994). [CrossRef]
  9. J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994). [CrossRef] [PubMed]
  10. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). [CrossRef]
  11. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes the Art of Scientific Computing (Cambridge U. Press, New York, 1986).
  12. H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).
  13. G. H. Gollub, C. F. V. Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1989).
  14. J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).
  15. H. S. Wilf, Mathematics for the Physical Sciences (Wiley, New York, 1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited