OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 26 — Sep. 10, 1998
  • pp: 6066–6077

Two simulators for photonic computer-aided design

Arthur J. Lowery and Phil C. R. Gurney  »View Author Affiliations


Applied Optics, Vol. 37, Issue 26, pp. 6066-6077 (1998)
http://dx.doi.org/10.1364/AO.37.006066


View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The computer-aided design of photonic systems offers many advantages for systems design, optimization, and planning. We present a comparison of two simulation packages for photonic-device, circuit, and system design. Both were developed by the Australian Photonics Cooperative Research Centre: the optoelectronic, photonic, and advanced laser simulator performs step-by-step simulations on complex photonic devices, circuits, and systems, allowing for backward waves and compound resonators; the gigabit optical link designer uses block processing of periodic waveforms to give an efficient estimation of eye diagrams and bit-error rates of time-division-multiplexed and wavelength-division-multiplexed systems. The gigabit optical link designer and the optoelectronic, photonic advanced laser simulator are compared, and examples of typical applications are given.

© 1998 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications

History
Original Manuscript: March 24, 1998
Published: September 10, 1998

Citation
Arthur J. Lowery and Phil C. R. Gurney, "Two simulators for photonic computer-aided design," Appl. Opt. 37, 6066-6077 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-26-6066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kazi, E. Donkor, “VHDL as a modeling and simulation platform for optical communication systems and devices,” Opt. Eng. 34, 1450–1455 (1995). [CrossRef]
  2. J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).
  3. G. L. Cariolaro, R. Corvaja, G. Pierobon, “Exact performance evaluation of lightwave systems with optical preamplifier,” Eur. Trans. Telecommun. Related Technol. 5, 757–766 (1994). [CrossRef]
  4. P. J. Corvini, T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” J. Lightwave Technol. 5, 1591–1595 (1987). [CrossRef]
  5. P. J. Corvini, T. L. Koch, “Semiconductor laser chirping-induced dispersive distortion in high-bit-rate optical fiber communications systems,” IEEE International Conference on Communications ’88: Digital Technology—Spanning the Universe (IEEE, New York, 1988), Vol. 2, pp. 584–587.
  6. J. C. Cartledge, G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightwave Technol. 7, 568–573 (1989). [CrossRef]
  7. T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995). [CrossRef]
  8. K. B. Letaief, “Performance analysis of digital lightwave systems using efficient computer simulation techniques,” IEEE Trans. Commun. 43, 240–251 (1995). [CrossRef]
  9. E. I. Ackerman, J. L. Prince, J. A. MacDonald, “Signal and noise analysis of external modulation fiber optic link with optical component and arbitrary lossless matching circuits,” in 1995 IEEE MTT-S International Microwave Symposium, (Tech. Dig. 95CH3577-4) (IEEE, New York, 1995), Vol. 3, pp. 1173–1176.
  10. A. Naka, S. Saito, “In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,” J. Lightwave Technol. 12, 280–287 (1994). [CrossRef]
  11. S. Yamamoto, H. Taga, H. Wakabayashi, “Computer simulation of signal transmission characteristics in optical fiber communication system using LiNbO3 Mach–Zehnder modulator,” Trans. Inst. Electron. Inf. Commun. Eng. E E73, 481–484 (1990).
  12. J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.
  13. J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994). [CrossRef]
  14. A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988). [CrossRef]
  15. T. D. Stephens, “Modelling and analysis of high bit rate systems,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 20–23.
  16. P. L. Mason, R. V. Penty, I. H. White, “Extending the transmission distance of a directly modulated laser source using Bragg grating dispersion,” in IEE Colloquium on Optical Fibre Gratings and Their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995), pp. 12/1–12/5.
  17. D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991). [CrossRef]
  18. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995). [CrossRef]
  19. S. Tariq, J. C. Palais, “A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications,” J. Lightwave Technol. 11, 1914–1924 (1993). [CrossRef]
  20. O. Tageman, “Models of optical fibre transmission for HSpice,” Elektronik 43, 118, 120, 122–6 (1994).
  21. J. Zhou, S. D. Walker, “Novel simulation tools for high speed optical fibre communication systems operations,” in Digest of the Third Bangor Symposium on Communications (University of Wales, Bangor, Wales, 1991), pp. 263–266.
  22. E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).
  23. E. Gay, M. Le Ligne, D. Hui Bon Hoa, “An example of the use of the Comsis software: simulation of an optical network which uses wavelength multiplexing, FSK modulation format and direct detection. II,” Ann. Telecommun. 50, 389–400 (1995).
  24. S. V. Ahamed, V. B. Lawrence, “A PC based CAD environment for fiber optic simulations,” in GLOBECOM ’89. IEEE Global Telecommunications Conference and Exhibition. Communications Technology for the 1990s and Beyond, 89CH2682-3 (IEEE, New York, 1989), Vol. 2, pp. 696–701.
  25. A. J. Lowery, “Computer-aided photonics design,” IEEE Spectrum 34(4), 26–31 (1997). [CrossRef]
  26. A. J. Lowery, “Semiconductor device and lightwave system performance modeling,” in Optical Fiber Communications Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper ThG5.
  27. G. J. Pendock, “WDM transmission simulator,” in Second Optoelectronics and Communications Conference, (OECC ’97), (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 296–297.
  28. OPALS was initially developed by the Australian Photonics Cooperative Research Centre at the University of Melbourne. It is now a product of Virtual Photonics Pty Ltd. (info@vp.com.au).
  29. GOLD was initially developed by the Australian Photonics Cooperative Research Centre at the University of Melbourne. It is now a product of Virtual Photonics Pty Ltd. (info@vp.com.au).
  30. Broad-NED is a product of Broadband Network Design, Berlin, Germany.
  31. B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995). [CrossRef]
  32. labview is registered trademark of National Instruments Inc., Austin, Tex.
  33. A. J. Lowery, P. C. R. Gurney, “Computer-aided design of photonic circuits and systems,” in Second Optoelectronics and Communications Conference (OECC ’97) (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 260–261.
  34. A. J. Lowery, “A new dynamic semiconductor laser model based on the transmission-line modelling method,” Proc. Inst. Electr. Eng. Optoelectron. 134, 281–289 (1987).
  35. A. J. Lowery, A. J. Keating, C. N. Murtonen, “Modeling the static and dynamic behavior of quarter-wave shifted DFB lasers,” IEEE J. Quantum Electron. 28, 1874–1883 (1992). [CrossRef]
  36. A. J. Lowery, “Relaxation oscillations due to asymmetric spatial hole-burning in uniform DFB semiconductor lasers,” Electron. Lett. 29, 1852–1853 (1993). [CrossRef]
  37. A. J. Lowery, “New time-domain model for active mode-locking based on the transmission-line laser model,” Proc. Inst. Electr. Eng. Optoelectron. 136, 264–272 (1989).
  38. A. J. Lowery, “Transmission-line laser modelling of semiconductor laser amplified optical communications systems,” Proc. Inst. Electr. Eng. Optoelectron. 139, 180–188 (1992).
  39. A. J. Lowery, “Modelling ultra-short pulses (less than the cavity transit time) in semiconductor laser amplifiers,” Int. J. Optoelectron. 3, 497–508 (1988).
  40. P. C. R. Gurney, A. J. Lowery, “Dynamics of an all-optical clock recovery system,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 302–305.
  41. G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995). [CrossRef]
  42. P. C. R. Gurney, A. J. Lowery, “Simulation of laser sources for millimeter-wave signal generation,” in Physics and Simulation of Optoelectronic Devices V, Photonics West ’97, M. Osinski, W. W. Chow, eds., Proc. SPIE2994, 493–503 (1997). [CrossRef]
  43. A. J. Lowery, P. C. R. Gurney, “Comparison of optical processing techniques for optical microwave signal generation,” IEEE Trans. Microwave Theory Tech. 46, 142–150 (1998). [CrossRef]
  44. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).
  45. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes,” J. Opt. Soc. Am. A 5, 392–402 (1988). [CrossRef]
  46. M. Premaratne, A. J. Lowery, D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 290–303 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited