OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 26 — Sep. 10, 1998
  • pp: 6078–6092

Chatoyant: a Computer-Aided- Design Tool for Free-Space Optoelectronic Systems

Steven P. Levitan, Timothy P. Kurzweg, Philippe J. Marchand, Mark A. Rempel, Donald M. Chiarulli, Jose A. Martinez, John M. Bridgen, Chi Fan, and Frederick B. McCormick  »View Author Affiliations

Applied Optics, Vol. 37, Issue 26, pp. 6078-6092 (1998)

View Full Text Article

Acrobat PDF (948 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chatoyant is a tool for the simulation and the analysis of heterogeneous free-space optoelectronic architectures. It is capable of modeling digital and analog electronic and optical signal propagation with mechanical tolerancing at the system level. We present models for a variety of optoelectronic devices and results that demonstrate the system’s ability to predict the effects of various component parameters, such as detector geometry, and system parameters, such as alignment tolerances, on system-performance measures, such as the bit-error rate.

© 1998 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4830) Optical design and fabrication : Systems design
(250.0250) Optoelectronics : Optoelectronics

Steven P. Levitan, Timothy P. Kurzweg, Philippe J. Marchand, Mark A. Rempel, Donald M. Chiarulli, Jose A. Martinez, John M. Bridgen, Chi Fan, and Frederick B. McCormick, "Chatoyant: a Computer-Aided- Design Tool for Free-Space Optoelectronic Systems," Appl. Opt. 37, 6078-6092 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Arrathoon, Optical Computing, Digital and Symbolic (Marcel Dekker, New York, 1985).
  2. R. A. Athale, ed., Digital Optical Computing, Vol. CR35 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990).
  3. H. S. Hinton, An Introduction to Photonic Switching Fabrics (Plenum, New York, 1993).
  4. A. D. McAulay, Optical Computer Architectures (Wiley, New York, 1991).
  5. C. Bergstrom and J. Palais, “Digital fiber optic network synthesis,” IEEE Lightwave Telecommun. Syst. 3, 27–33 (1992).
  6. D. Zaleta, S. Patra, V. Ozguz, J. Ma, and S. H. Lee, “Tolerancing of board-level free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996).
  7. J. Fan, B. Catanzaro, F. E. Kiamilev, S. C. Esener, and S. H. Lee, “Architecture of an integrated computer-aided design system for optoelectronics,” Opt. Eng. 33, 1571–1580 (1994).
  8. S. Koh and L. Ye, “Modeling and simulation of optoelectronic multichip modules using VHDL,” in Optoelectronic Integrated Circuits, Y-S. Park, ed., Proc. SPIE 3006, 418–428 (1997).
  9. D. Fey, HADLOP (Friedrich-Schiller-Universitat, Jena, Germany, 1996, http://www2.informatik.unijena.de/pope/HADLOP/hadlop.html).
  10. M. A. Neifeld and W.-C. Chou, “Electrical packaging impact on source components in optical interconnects,” IEEE Trans. Components Packag. Manuf. Technol. Part B 18, 578–595 (1995).
  11. J. M. Xu and D. S. Ellis, “OEUT-Spice: A CAD tool for design and simulation of OEIC,” in Optoelectronic Integrated Circuits, Y-S. Park, ed., Proc. SPIE 3006, 406–417 (1997).
  12. J. C. Eble, V. K. De, and J. D. Meindl, “A first generation generic system simulator (GENESYS) and its relation to NTRS,” in Proceedings of the IEEE Eleventh Biennial University/Government/Industry Microelectronics (UGIM) Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 147–154.
  13. A. J. Lowery, P. C. R. Gurney, X.-H. Wang, L. V. T. Nguyen, and M. Premartane, “Time-domain simulation of photonic devices, circuits and systems,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow and M. Osinski, eds., Proc. SPIE 2693, 624–635 (1996).
  14. J. J. Morikuni and S. Kang, Computer-Aided Design of Optoelectronic Integrated Circuits and Systems (Prentice-Hall, Englewood Cliffs, N.J., 1997).
  15. A. Louri and J. Na, “Modeling and simulation methodology for digital optical computing systems,” Appl. Opt. 33, 1549–1558 (1994).
  16. A. T. Yang, D. S. Gao, and S. M. Kang, “Computer-aided simulation of optical interconnects for high-speed digital systems,” in Proceedings of the 1988 IEEE International Conference on Computer Design (IEEE Computer Society, Los Alamitos, Calif., 1988), pp. 87–90.
  17. S. P. Levitan, P. J. Marchand, M. Rempel, D. M. Chiarulli, and F. B. McCormick, “Computer-aided design of free-space optoelectronic interconnection (FSOI) systems,” in Second International IEEE Workshop on Massively Parallel Processing Using Optical Interconnections, E. Schenfeld, ed. (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 239–245.
  18. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chaps. 1–3.
  19. S. Chenney, Sced: Constraints Based Scene Editing User’s Guide (Basser Department of Computer Science, University of Sydney, Sydney, Australia, 1996, http://http.cs.berkeley.edu/~schenney/sced/sced.html).
  20. D. Wells and C. Young, The Waite Group’s Ray Tracing Creations (Waite Group, Corte Madera, Calif., 1993, http://www.povray.org/).
  21. P. Belland and J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
  22. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, and H. S. Hinton, “Microbeam optical interconnections using microlens arrays,” in Photonic Switching, H. S. Hinton and J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 90–96.
  23. S. P. Levitan, P. J. Marchand, T. P. Kurzweg, M. A. Rempel, D. M. Chiarulli, C. Fan, and F. B. McCormick, “Computer-aided design of free-space opto-electronic systems,” in Proceedings of the 1997 Design Automation Conference (Association for Computing Machinery, New York, 1997), pp. 768–773.
  24. G. Vdovin, H. van Brug, and F. van Goor, “LightPipes: software for education in coherent optics,” presented at the Fifth International Topical Meeting on Education and Training in Optics, Delft, The Netherlands, 19–21 August 1997.
  25. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, and G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 34, 3103–3115 (1995).
  26. O. Kibar, D. A. Van Blerkom, C. Fan, and S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” presented at OSA Topical Meeting on Spatial Light Modulators, Lake Tahoe, Nev., March 1997.
  27. W. Shockley, “A unipolar field effect transistor,” Proc. Inst. Radio Eng. 40, 1365–1376 (1952).
  28. N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd ed. (Addison-Wesley, Reading, Mass., 1993), Chap. 2.
  29. J. Buck, S. Ha, E. A. Lee, and D. Messerschmitt, “Ptolemy: a framework for simulating and prototyping heterogeneous systems,” Int. J. Comput. Simulation 4, 155–182 (1994).
  30. T. P. Kurzweg, “A CAD system for modeling free space opto-electronic systems,” M.S. thesis (Department of Electrical Engineering, University of Pittsburgh, Pittsburgh, Pa., 1997).
  31. J. J. Morikuni, A. Dharchoudhury, Y. Leblebici, and S. M. Kang, “Improvements to the standard theory for photoreceiver noise,” J. Lightwave Technol. 12, 1174–1184 (1994).
  32. M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Sel. Areas Commun. 2, 153–170 (1994).
  33. B. K. Whitlock, “iFrost: a CAD tool for modeling and simulation of optical interconnects,” Ph.D. dissertation (School of Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill., 1996).
  34. A. V. Krishnamoorthy, T. K. Woodward, K. W. Goossen, J. A. Walker, A. L. Lentine, L. M. F. Chirovsky, S. P. Hui, B. Tseng, R. Leibenguth, J. E. Cunningham, and W. Y. Jan, “Operation of a single-ended 550Mbit/s, 41fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–766 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited