OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 26 — Sep. 10, 1998
  • pp: 6127–6135

Simulating free-space optical computing architectures

Irvin R. Jones, Jr. and Vincent P. Heuring  »View Author Affiliations

Applied Optics, Vol. 37, Issue 26, pp. 6127-6135 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Major issues in optoelectronic system design include timing, synchronization, and control. Designing free-space optical computing architectures is difficult because of the high degree of system complexity, parallelism, and concurrency in conjunction with the high cost and lack of availability of devices. Current simulation tools lack the expressiveness to model the system structure and behavior of parallel and concurrent architectures, thus making them inefficient and ineffective. We show that Petri nets, compared with other system-modeling methodologies, are more efficient and effective at expressing the functional, behavioral, and structural properties of parallel and concurrent architectures. We show how an extended version of the standard Petri net, a timed–colored Petri net, is used to model and simulate free-space optoelectronic computing architectures. We also present methods for analysis of system timing, synchronization, and control behavior.

© 1998 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.3050) Optics in computing : Information processing
(200.4740) Optics in computing : Optical processing
(200.4960) Optics in computing : Parallel processing

Original Manuscript: January 20, 1998
Revised Manuscript: April 24, 1998
Published: September 10, 1998

Irvin R. Jones and Vincent P. Heuring, "Simulating free-space optical computing architectures," Appl. Opt. 37, 6127-6135 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Cathey, “Promises and prospects of optoelectronic computing,” in LEOS Conference Proceedings IEEE Lasers and Electro-Optics Society Annual Meeting (IEEE, New York, 1993), pp. 69–70.
  2. L. Ji, V. P. Heuring, “The impact of gate fan-in and fan-out limits on optoelectronic digital circuits,” Appl. Opt. 36, 3937–3940 (1997). [CrossRef]
  3. J. A. Neff, “Optoelectronic arrays for hybrid optical/electronic computing,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. SPIE1215, 44–54 (1990). [CrossRef]
  4. H. S. Hinton, T. J. Cloonan, F. B. McCormick, F. A. P. Tooley, A. L. Lentine, “Free-space digital optical systems,” Proc. IEEE—Special Issue on Optical Computing 82, 1632–1649 (1994).
  5. J. N. Lee, Design Issues in Optical Processing (Cambridge U. Press, Cambridge, 1995), pp. 84–131.
  6. A. Louri, J. Na, “Modeling and simulation methodology for digital optical computing systems,” Appl. Opt. 33, 1549–1558 (1994). [CrossRef] [PubMed]
  7. J. M. Xu, D. S. Ellis, “oeUT-spice: A CAD tool for design and simulation of OEIC,” in Optoelectronic Integrated Circuits, Y.-S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 406–417 (1977). [CrossRef]
  8. J. J. Morikuni, S.-M. Kang, Computer-Aided Design of Optoelectronic Integrated Circuits and Systems (Prentice-Hall, Englewood Cliffs, N.J., 1997).
  9. S. Koh, L. Ye, “Modeling and simulation of optoelectronic multichip modules using vhdl,” in Optoelectronic Integrated Circuits, Y.-S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 418–428 (1977). [CrossRef]
  10. D. Gajski, N. Dutt, A. Wu, S. Lin, “Design representation and transformation,” in High-Level Synthesis—Introduction to Chip and System Design (Kluwer, Dordrecht, The Netherlands, 1992).
  11. R. Waxman, J.-M. Bergé, O. Levia, J. Rouillard, High-Level System Modeling: Specification and Design Methodologies (Kluwer, Dordrecht, The Netherlands, 1996). [CrossRef]
  12. R. David, H. Alla, Petri Nets and Grafcet—Tools for Modeling Discrete Event Systems (Prentice-Hall, Englewood Cliffs, N.J., 1992).
  13. T. Murata, “Petri nets: properties, analysis and applications,” Proc. IEEE 77, 541–580 (1989). [CrossRef]
  14. K. Jensen, G. Rosenberg, High-Level Petri Nets: Theory and Applications (Springer-Verlag, Berlin, Heidelberg, 1991).
  15. W. M. Zuberek, “Timed Petri nets definitions, properties, and applications,” Microelectron. Reliab. 31, 627–644 (1991). [CrossRef]
  16. V. P. Heuring, L. H. Ji, R. J. Feuerstein, V. Morozov, “Toward a free-space parallel optoelectronic computer: a 300-MHz optoelectronic counter using holographic interconnects,” Appl. Opt. 33, 7579–7587 (1994). [CrossRef] [PubMed]
  17. L. Ferrarini, “An incremental approach to logic controller design with Petri nets,” IEEE Trans. Syst. Man Cybern. 22, 461–473 (1992). [CrossRef]
  18. V. Heuring, V. Morozov, “Synchronizing and controlling fast digital optical processors,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 188–191.
  19. J. P. Pratt, V. P. Heuring, “Delay synchronization in time-of-flight optical systems,” Appl. Opt. 31, 2430–2437 (1992). [CrossRef] [PubMed]
  20. M. J. Denham, Advanced Computing Concepts and Techniques in Control Engineering, Vol. F47 of NATO ASI Series (Springer-Verlag, Berlin, 1988), pp. 191–214. [CrossRef]
  21. W.-K. Chen, Theory of Nets: Flows in Networks (Wiley, New York, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited