OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 26 — Sep. 10, 1998
  • pp: 6136–6139

Small-signal-equivalent circuits for a semiconductor laser

Osman Kibar, Daniel Van Blerkom, Chi Fan, Philippe J. Marchand, and Sadik C. Esener  »View Author Affiliations


Applied Optics, Vol. 37, Issue 26, pp. 6136-6139 (1998)
http://dx.doi.org/10.1364/AO.37.006136


View Full Text Article

Enhanced HTML    Acrobat PDF (79 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Passive electrical circuits whose voltage and current equations are exactly equivalent to the small-signal rate equations of a semiconductor laser are derived to model an electrically modulated laser (verified to be the same as that given in the literature), an optically modulated laser (i.e., a laser used as an optical amplifier), and a multimode laser. These circuits offer a fast and efficient simulation tool with little computational complexity in which the small-signal assumption (i.e., small modulation range) is neither violated nor insufficient for the simulation.

© 1998 Optical Society of America

History
Original Manuscript: November 10, 1997
Revised Manuscript: April 24, 1998
Published: September 10, 1998

Citation
Osman Kibar, Daniel Van Blerkom, Chi Fan, Philippe J. Marchand, and Sadik C. Esener, "Small-signal-equivalent circuits for a semiconductor laser," Appl. Opt. 37, 6136-6139 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-26-6136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Tucker, “Large-signal circuit model for simulation of injection-laser modulation dynamics,” IEE Proc. 128, 180–184 (1981).
  2. M. F. Lu, J. S. Deng, C. Juang, M. J. Jou, B. J. Lee, “Equivalent circuit model of quantum-well lasers,” IEEE J. Quantum Electron. 31, 1418–1421 (1995). [CrossRef]
  3. D. Marcuse, “Computer model of an injection laser amplifier,” IEEE J. Quantum Electron. QE-19, 63–73 (1983). [CrossRef]
  4. M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEEE Proc. Part J 132, 58–63 (1985).
  5. D. E. Dodds, M. J. Sieben, “Electric circuit model of a Fabry–Perot semiconductor laser,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, C. R. Baird, M. E. El-Hawarg, eds. (Institute of Electrical and Electronics Engineers, New York, 1994), Vol. 1, pp. 371–374. [CrossRef]
  6. M. Morishita, T. Ohmi, J. Nishizawa, “Impedance characteristics of double-heterostructure laser diodes,” Solid-State Electron. 22, 951–962 (1979). [CrossRef]
  7. J. Katz, S. Margalit, C. Harder, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981). [CrossRef]
  8. R. S. Tucker, D. J. Pope, “Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser,” IEEE J. Quantum Electron. QE-19, 1179–1183 (1983). [CrossRef]
  9. R. S. Tucker, D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Technol. MTT-31, 289–294 (1983). [CrossRef]
  10. G. P. Agrawal, N. K. Dutta, Semiconductor Lasers (Van Nostrand-Reinhold, New York, 1993), Chap. 6.
  11. J. A. Arnaud, “Enhancement of optical receiver sensitivities by amplification of the carrier,” IEEE J. Quantum Electron. QE-4, 893–899 (1968). [CrossRef]
  12. S. D. Personick, “Applications for quantum amplifiers in simple digital optical communication system,” Bell Syst. Tech. J. 52, 117–133 (1973).
  13. F. Koyama, S. Kubota, K. Iga, “GaAlAs/GaAs active filter based on vertical cavity surface emitting laser,” Electron. Lett. 27, 1093–1095 (1991). [CrossRef]
  14. R. Raj, J. L. Oudar, M. Bensoussan, “Vertical cavity amplifying photonic switch,” Appl. Phys. Lett. 65, 2359–2361 (1994). [CrossRef]
  15. E. Hecht, Optics (Addison Wesley, Reading, Mass., 1990), pp. 363–370.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited