OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 26 — Sep. 10, 1998
  • pp: 6196–6212

Optimal Cascade Operation of Optical Phased-Array Beam Deflectors

James A. Thomas and Yeshaiahu Fainman  »View Author Affiliations


Applied Optics, Vol. 37, Issue 26, pp. 6196-6212 (1998)
http://dx.doi.org/10.1364/AO.37.006196


View Full Text Article

Acrobat PDF (575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optimal strategy for cascading phased-array deflectors is presented that allows for high-resolution random-access beam steering with continuous scan-angle control but requires a minimum number of control lines. The system is analyzed theoretically by use of a Fourier optics approach and then verified experimentally. A pair of 32-channel optical phased arrays fabricated by use of surface electrodes on lanthanum-modified lead zirconate titanate (PLZT) was sandwiched together to form a functional two-stage phased-array cascade. Experimental results from the PLZT-based two-stage deflector are presented that confirm the performance enhancements of the optimized cascading technique. A phase-staggered discrete–offset-bias protocol for controlling the cascaded system is shown to be optimal in terms of maximum diffraction efficiency and minimum number of control lines, while still providing for full analog scan control.

© 1998 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy

Citation
James A. Thomas and Yeshaiahu Fainman, "Optimal Cascade Operation of Optical Phased-Array Beam Deflectors," Appl. Opt. 37, 6196-6212 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-26-6196


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
  2. T. C. Cheston and J. Frank, “Phased array radar antennas,” in Radar Handbook, 2nd ed., M. I. Skolnik, ed. (McGraw-Hill, New York, 1990), Chap. 7, pp. 7.1–7.82.
  3. R. M. Matic, “Blazed phase liquid crystal steering,” in Laser Beam Propagation and Control, H. Weichel and L. F. DeSandre, eds., Proc. SPIE 2120, 194–205 (1994).
  4. R. A. Meyer, “Optical beam steering using a multichannel lithium tantalate crystal,” Appl. Opt. 11, 613–616 (1972).
  5. Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9(8), 791–795 (1973).
  6. Y. Ninomiya, “High S/N-ratio electrooptic prism-array light deflectors,” IEEE J. Quantum. Electron. QE-10, 358–362 (1974).
  7. T.-C. Lee and J. D. Zook, “Parallel array light beam deflector with variable phase plate,” U.S. patent no. 3, 650, 602 (issued 21 March 1972).
  8. C. H. Bulmer, W. K. Burns, and T. G. Giallorenzi, “Performance criteria and limitations of electro-optic waveguide array deflectors,” Appl. Opt. 18, 3282–3295 (1979).
  9. D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, and D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
  10. F. Vasey, F. K. Reinhart, R. Houdré, and J. M. Stauffer, “Spatial optical beam steering with an AlGaAs integrated phased array,” Appl. Opt. 32, 3220–3232 (1993).
  11. T. A. Dorschner and D. P. Resler, “Optical beam steerer having subaperture addressing,” U.S. patent no. 5, 093, 740 (issued 3 March 1992).
  12. J. A. Thomas and Y. Fainman, “Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator,” Opt. Lett. 20, 1510–1512 (1995).
  13. P. J. Talbot and Q. W. Song, “Design and simulation of PLZT-based electro-optic phased array scanners,” Opt. Memory Neural Net. 3, 111–117 (1994).
  14. T. Tatebayashi, T. Yamamoto, and H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
  15. N. A. Riza and M. C. DeJule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
  16. J. G. Skinner, “Optimal electrooptic deflection scheme,” Appl. Opt. 7, 1239–1240 (1968).
  17. H. J. Boll, “Cascaded light beam deflector system,” U.S. patent no. 3, 544, 200 (issued 1 December 1970).
  18. T. C. Lee and J. D. Zook, “Cascade operation of light beam deflectors by fly’s eye lenses,” Appl. Opt. 10, 1965–1966 (1971).
  19. K. M. Flood, B. Cassarly, C. Sigg, and J. M. Finlan, “Continuous wide angle beam steering using translation of binary microlens arrays and a liquid crystal phased array,” in Computer and Optically Formed Holographic Optics, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1211, 296–304 (1990).
  20. J. A. Thomas, M. E. Lasher, Y. Fainman, and P. Soltan, “PLZT-based dynamic diffractive optical element for high-speed random-access beam steering,” in Optical Scanning Systems: Design and Applications, L. Beiser and S. F. Sagan, eds., Proc. SPIE 3131, 124–132 (1997).
  21. G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
  22. R. Fleischmann and A. Lohmann, “Die Bestimmung einer absoluten Lichtphase durch Intensitätsmessung in der Beugungsfigur eines Gitters,” Z. Physik 137, 362–375 (1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited