OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 26 — Sep. 10, 1998
  • pp: 6275–6298

Parallel Detection Algorithm for Page-Oriented Optical Memories

Brian M. King and Mark A. Neifeld  »View Author Affiliations


Applied Optics, Vol. 37, Issue 26, pp. 6275-6298 (1998)
http://dx.doi.org/10.1364/AO.37.006275


View Full Text Article

Acrobat PDF (900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a parallel algorithm for the reliable detection of two-dimensional binary data in page-oriented memories. The development of the proposed pseudodecision-feedback equalization (PDFE) method is motivated by the classical decision-feedback equalization receiver. The technique takes advantage of the known or the estimated optical system characteristics to mitigate space-variant blur and additive thermal noise. We extend the method to correct for fixed-pattern errors including magnification, rotation, and transverse shift. Advantages of the PDFE algorithm include its parallel design, low computational complexity, and local connectivity. A system-capacity metric is used to compare the performance of the PDFE receiver with other conventional approaches, including the simple threshold, the 1:2 modulation code, and the Wiener filter. Results show the PDFE to outperform all the above techniques over a variety of channels for both incoherent and coherent systems. Implementation issues are discussed, and a MOSIS (Metal-Oxide Semiconductor Implementation Service) 2-μm design is presented.

© 1998 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(100.3010) Image processing : Image reconstruction techniques
(210.0210) Optical data storage : Optical data storage
(210.2860) Optical data storage : Holographic and volume memories
(210.4680) Optical data storage : Optical memories

Citation
Brian M. King and Mark A. Neifeld, "Parallel Detection Algorithm for Page-Oriented Optical Memories," Appl. Opt. 37, 6275-6298 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-26-6275


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
  2. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
  3. M. A. Neifeld and S. K. Sridharan, “Parallel error correction using spectral Reed–Solomon codes,” J. Opt. Commun. 18, 144–150 (1997).
  4. M. Aguilar, M. Carrascosa, and F. Agulló-López, “Optimization of selective erasure in photorefractive memories,” J. Opt. Soc. Am. B 14, 110–115 (1997).
  5. M. A. Neifeld and M. McDonald, “Technique for controlling cross-talk noise in volume holography,” Opt. Lett. 21, 1298–1300 (1996).
  6. M. A. Neifeld and M. McDonald, “Optical design for page access to volume optical media,” Appl. Opt. 35, 2418–2430 (1996).
  7. G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed holographic storage using the 90° geometry,” Opt. Commun. 117, 49–55 (1995).
  8. M. A. Neifeld and J. D. Hayes, “Error-correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
  9. F. Dai and C. Gu, “Effect of Gaussian references on cross-talk noise reduction in volume holographic memory,” Opt. Lett. 22, 1802–1804 (1997).
  10. M. A. Neifeld and M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
  11. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
  12. G. D. Forney, “The Viterbi algorithm,” Proc. IEEE 61, 268–278 (1973).
  13. K. M. Chugg, “Performance of optimal digital page detection in a two-dimensional ISI/AWGN channel,” in Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers, A. Singh, ed. (IEEE Computer Society, Los Alamitos, Calif., 1997), Vol. 2, pp. 956–962.
  14. J. F. Heanue, K. Gürkan, and L. Hesselink, “Signal detection for page-access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996).
  15. C. L. Miller, B. R. Hunt, M. A. Neifeld, and M. W. Marcellin, “Binary image reconstruction via 2-D Viterbi search,” in Proceedings of the International Conference on Image Processing (IEEE Computer Society, Los Alamitos, Calif., 1997), Vol. 1, pp. 181–184.
  16. D. Messerschmitt, “A geometric theory of intersymbol interference: part I,” Bell Sys. Tech. J. 52, 1483–1519 (1973).
  17. J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, New York, 1995).
  18. M. A. Neifeld, K. M. Chugg, and B. M. King, “Parallel data detection in page-oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996).
  19. M. A. Neifeld and W.-C. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997).
  20. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
  21. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
  22. E. A. Lee and D. G. Messerschmitt, Digital Communications (Kluwer, Dordrecht, The Netherlands, 1988).
  23. D. Brady and D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
  24. S. S. Haykin, Neural Networks: A Comprehensive Foundation (Macmillan, New York, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited