OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6321–6328

Molecular backscatter heterodyne lidar: a computational evaluation

Barry J. Rye  »View Author Affiliations

Applied Optics, Vol. 37, Issue 27, pp. 6321-6328 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (199 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of heterodyne lidar to observe molecular scattering is considered. Despite the reduced Rayleigh cross section, infrared systems are predicted to require mean power levels comparable with those of current and proposed direct detection lidars that operate with the thermally broadened spectra in the visible or ultraviolet. Rayleigh–Brillouin scattering in the kinetic and hydrodynamic (collisional) regimes encountered in the infrared is of particular interest because the observed spectrum approaches a triplet of relatively narrow lines that are more suitable for wind, temperature, and pressure measurements.

© 1998 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3420) Remote sensing and sensors : Laser sensors
(280.3640) Remote sensing and sensors : Lidar
(290.5830) Scattering : Scattering, Brillouin
(290.5870) Scattering : Scattering, Rayleigh

Original Manuscript: October 20, 1997
Revised Manuscript: June 5, 1998
Published: September 20, 1998

Barry J. Rye, "Molecular backscatter heterodyne lidar: a computational evaluation," Appl. Opt. 37, 6321-6328 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Lock, R. G. Seasholtz, W. T. John, “Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31, 2839–2848 (1992). [CrossRef] [PubMed]
  2. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in Doppler lidar. I: Incoherent spectral accumulation and the Cramer-Rao bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  3. S. Yip, “Rayleigh scattering in dilute gases,” J. Acous. Soc. Am. 49, 941–949 (1970). [CrossRef]
  4. R. G. Seasholtz, A. E. Buggele, M. F. Reeder, “Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer,” Opt. Lasers 27, 543–570 (1997). [CrossRef]
  5. A. T. Young, G. W. Kattawar, “Rayleigh scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983). [CrossRef] [PubMed]
  6. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983). [CrossRef] [PubMed]
  7. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering: a laser-based flow diagnostic for planar measurement of velocity,” Ph.D. dissertation (Princeton University, Princeton N.J., 1996).
  8. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  9. R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin scattering in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976). [CrossRef]
  10. Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3554 (1976). [CrossRef]
  11. E. Holzhauer, “Forward scattering at 10.6 μm using light mixing to measure the ion temperature in a hydrogen arc plasma,” Phys. Lett. A 62, 495–497 (1997). [CrossRef]
  12. R. E. Slusher, C. M. Surko, “Study of density fluctuations in plasmas by small-angle CO2 laser scattering,” Phys. Fluids 23, 472–490 (1980). [CrossRef]
  13. R. G. Frehlich, “Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals,” IEEE Trans. Geosci. Remote Sensing 31, 1123–1131 (1993). [CrossRef]
  14. B. J. Rye, “The reference range for atmospheric backscatter lidar,” Opt. Quantum Electron. 11, 441–446 (1979). [CrossRef]
  15. R. T. H. Collins, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Topics in Applied Physics, (Springer-Verlag, Berlin, 1976). [CrossRef]
  16. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989). [CrossRef]
  17. B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997); errata, 37, 4016 (1998).
  18. V. Hasson, F. Corbett, “Long-range coherent frequency agile laser radars for precision tracking, imaging, and chemical detection applications,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defence Research Establishment, Linkoping, Sweden, 1997), p. W1.
  19. D. S. Zrnic, “Estimation of spectral moments for weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979). [CrossRef]
  20. W. B. Davenport, W. T. Root, Random Signals and Noise (McGraw-Hill, New York, 1958).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited