OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6329–6338

Hyperspectral remote sensing for shallow waters. I. A semianalytical model

Zhongping Lee, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer S. Patch  »View Author Affiliations


Applied Optics, Vol. 37, Issue 27, pp. 6329-6338 (1998)
http://dx.doi.org/10.1364/AO.37.006329


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For analytical or semianalytical retrieval of shallow-water bathymetry and/or optical properties of the water column from remote sensing, the contribution to the remotely sensed signal from the water column has to be separated from that of the bottom. The mathematical separation involves three diffuse attenuation coefficients: one for the downwelling irradiance (K d ), one for the upwelling radiance of the water column (K u C ), and one for the upwelling radiance from bottom reflection (K u B ). Because of the differences in photon origination and path lengths, these three coefficients in general are not equal, although their equality has been assumed in many previous studies. By use of the Hydrolight radiative-transfer numerical model with a particle phase function typical of coastal waters, the remote-sensing reflectance above (Rrs) and below (rrs) the surface is calculated for various combinations of optical properties, bottom albedos, bottom depths, and solar zenith angles. A semianalytical (SA) model for rrs of shallow waters is then developed, in which the diffuse attenuation coefficients are explicitly expressed as functions of in-water absorption (a) and backscattering (b b ). For remote-sensing inversion, parameters connecting Rrs and rrs are also derived. It is found that rrs values determined by the SA model agree well with the exact values computed by Hydrolight (∼3% error), even for Hydrolight rrs values calculated with different particle phase functions. The Hydrolight calculations included b b /a values as high as 1.5 to simulate high-turbidity situations that are occasionally found in coastal regions.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: December 3, 1997
Revised Manuscript: May 18, 1998
Published: September 20, 1998

Citation
Zhongping Lee, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975). [CrossRef] [PubMed]
  2. D. R. Lyzenga, “Passive remote-sensing techniques for mapping water depth and bottom features,” Appl. Opt. 17, 379–883 (1978). [CrossRef] [PubMed]
  3. W. D. Philpot, “Bathymetric mapping with passive multispectral imagery,” Appl. Opt. 28, 1569–1578 (1989). [CrossRef] [PubMed]
  4. N. T. O’Neill, J. R. Miller, “On calibration of passive optical bathymetry through depth soundings analysis and treatment of errors resulting from the spatial variation of environmental parameters,” Int. J. Remote Sensing 10, 1481–1501 (1989). [CrossRef]
  5. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994). [CrossRef] [PubMed]
  6. S. Maritorena, A. Morel, B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689–1703 (1994). [CrossRef]
  7. J. M. Paredes, R. E. Spero, “Water depth mapping from passive remote sensing data under a generalized ratio assumption,” Appl. Opt. 22, 1134–1135 (1983). [CrossRef] [PubMed]
  8. D. Spitzer, R. W. J. Dirks, “Bottom influence on the reflectance of the sea,” Int. J. Remote Sensing 8, 279–290 (1987). [CrossRef]
  9. R. W. Preisendorfer, Hydrologic Optics, Vol. 1: Introduction, NTIS PB-259 793/8ST (National Technical Information Service, Springfield, Va., 1976).
  10. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991). [CrossRef]
  11. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef] [PubMed]
  12. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, New York, 1994).
  13. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988). [CrossRef]
  14. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  15. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?” Limnol. Oceanogr. 34, 1389–1409 (1989). [CrossRef]
  16. C. D. Mobley, Hydrolight 3.0 Users’ Guide, Final Report (SRI International, Menlo Park, Calif., 1995).
  17. T. Tyrrell, P. M. Holligan, C. D. Mobley are preparing the following paper for publication: “Optical impacts of oceanic coccolithophore blooms.”
  18. J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer are preparing the following paper for publication: “The effect of Raman scattering on the underwater light field.”
  19. C. D. Mobley, D. Stramski.“Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997). [CrossRef]
  20. W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  21. R. Pope, E. Fry, “Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  22. Z. P. Lee, “Visible-infrared remote-sensing model and applications for ocean waters,” Ph.D. dissertation (Department of Marine Science, University of South Florida, St. Petersburg, Fla., 1994).
  23. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981). [CrossRef]
  24. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  25. A. Morel, “Optical properties of pure water and pure sea waters,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  26. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: a Review (Springer-Verlag, New York, 1983), p. 44.
  27. H. R. Gordon, “Dependence of the diffuse reflectance of natural waters on the sun angle,” Limnol. Oceanogr. 34, 1484–1489 (1989). [CrossRef]
  28. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angles as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  29. J. H. Jerome, R. P. Bukata, J. E. Burton, “Utilizing the components of vector irradiance to estimate the scalar irradiance in natural waters,” Appl. Opt. 27, 4012–4018 (1988). [CrossRef] [PubMed]
  30. H. R. Gordon, G. C. Boynton, “Radiance—irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997). [CrossRef] [PubMed]
  31. S. Sathyendranath, T. Platt, “Analytical model of ocean color,” Appl. Opt. 36, 2620–2629 (1997). [CrossRef] [PubMed]
  32. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  33. W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987). [CrossRef] [PubMed]
  34. H. R. Gordon, O. B. Brown, “Influence of bottom depth and albedo on the diffuse reflectance of a flat homogeneous ocean,” Appl. Opt. 13, 2153–2159 (1974). [CrossRef] [PubMed]
  35. D. R. Lyzenga, “Reflectance of a flat ocean in the limit of zero water depth,” Appl. Opt. 16, 282–283 (1977). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited