OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6366–6374

Performance limitations of a free-space optical communication satellite network owing to vibrations: heterodyne detection

Shlomi Arnon, Stanley R. Rotman, and Norman S. Kopeika  »View Author Affiliations


Applied Optics, Vol. 37, Issue 27, pp. 6366-6374 (1998)
http://dx.doi.org/10.1364/AO.37.006366


View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Free-space optical communication between satellites in a distributed network can permit high data rates of communication between different places on Earth. To establish optical communication between any two satellites requires that the line of sight of their optics be aligned during the entire communication time. Because of the large distance between the satellites and the alignment accuracy required, the pointing from one satellite to another is complicated because of vibrations of the pointing system caused by two fundamental stochastic mechanisms: tracking noise created by the electro-optic tracker and vibrations derived from mechanical components. Vibration of the transmitter beam in the receiver plane causes a decrease in the received optical power. Vibrations of the receiver telescope relative to the received beam decrease the heterodyne mixing efficiency. These two factors increase the bit-error rate of a coherent detection network. We derive simple mathematical models of the network bit-error rate versus the system parameters and the transmitter and receiver vibration statistics. An example of a practical optical heterodyne free-space satellite optical communication network is presented. From this research it is clear that even low-amplitude vibration of the satellite-pointing systems dramatically decreases network performance.

© 1998 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4510) Fiber optics and optical communications : Optical communications
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(200.2610) Optics in computing : Free-space digital optics

History
Original Manuscript: February 3, 1998
Revised Manuscript: May 8, 1998
Published: September 20, 1998

Citation
Shlomi Arnon, Stanley R. Rotman, and Norman S. Kopeika, "Performance limitations of a free-space optical communication satellite network owing to vibrations: heterodyne detection," Appl. Opt. 37, 6366-6374 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6366

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited