Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Performance limitations of a free-space optical communication satellite network owing to vibrations: heterodyne detection

Not Accessible

Your library or personal account may give you access

Abstract

Free-space optical communication between satellites in a distributed network can permit high data rates of communication between different places on Earth. To establish optical communication between any two satellites requires that the line of sight of their optics be aligned during the entire communication time. Because of the large distance between the satellites and the alignment accuracy required, the pointing from one satellite to another is complicated because of vibrations of the pointing system caused by two fundamental stochastic mechanisms: tracking noise created by the electro-optic tracker and vibrations derived from mechanical components. Vibration of the transmitter beam in the receiver plane causes a decrease in the received optical power. Vibrations of the receiver telescope relative to the received beam decrease the heterodyne mixing efficiency. These two factors increase the bit-error rate of a coherent detection network. We derive simple mathematical models of the network bit-error rate versus the system parameters and the transmitter and receiver vibration statistics. An example of a practical optical heterodyne free-space satellite optical communication network is presented. From this research it is clear that even low-amplitude vibration of the satellite-pointing systems dramatically decreases network performance.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Power versus stabilization for laser satellite communication

Shlomi Arnon
Appl. Opt. 38(15) 3229-3233 (1999)

Beam width and transmitter power adaptive to tracking system performance for free-space optical communication

Shlomi Arnon, Stanly Rotman, and Norman S. Kopeika
Appl. Opt. 36(24) 6095-6101 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved