OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6386–6394

Axial Force Acting on a Dielectric Sphere in a Focused Laser Beam

Shojiro Nemoto and Hiroyoshi Togo  »View Author Affiliations

Applied Optics, Vol. 37, Issue 27, pp. 6386-6394 (1998)

View Full Text Article

Acrobat PDF (505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the detailed behavior of the axial force acting on a dielectric sphere exerted by the optical pressure of a focused Gaussian laser beam. Comparison is made between the numerical results and those calculated from the radiation pressure cross section. There is also a discussion as to whether the expressions for the axial force given in this paper are consistent with the previously reported experimental results. Moreover, a simple experimental method to measure the axial force on a polystyrene sphere suspended in water is demonstrated, and fairly good agreement between theoretical and experimental results was obtained.

© 1998 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7010) Lasers and laser optics : Laser trapping
(350.4990) Other areas of optics : Particles

Shojiro Nemoto and Hiroyoshi Togo, "Axial Force Acting on a Dielectric Sphere in a Focused Laser Beam," Appl. Opt. 37, 6386-6394 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
  3. A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
  4. G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
  5. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–194 (1977).
  6. G. Roosen, “La lévitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979).
  7. W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
  8. S. Sato, M. Ohyumi, H. Shibata, H. Inaba, and Y. Ogawa, “Optical trapping of small particles using a 1.3-μm compact InGaAsP diode laser,” Opt. Lett. 16, 282–284 (1991).
  9. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
  10. A. Marcano O, “Laser-induced bubble trapping in liquids and its effect on light thermal blooming,” Appl. Opt. 31, 2757–2764 (1992).
  11. M. I. Angelova and B. Pouligny, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: I. Experimental,” Pure Appl. Opt. 2, 261–276 (1993).
  12. C. D’helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595–601 (1994).
  13. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
  14. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
  15. E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
  16. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26, 5311–5316 (1987).
  17. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
  18. H. Misawa, N. Kitamura, and H. Masuhara, “Laser manipulation and ablation of a single microcapsule in water,” J. Am. Chem. Soc. 113, 7859–7863 (1991).
  19. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett. 60, 310–312 (1992).
  20. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Laser manipulation and assembling of polymer latex particles in solution,” Macromolecules 26, 282–286 (1993).
  21. T. C. Bakker Schut, E. F. Schipper, B. G. de Grooth, and J. Greve, “Optical-trapping micromanipulation using 780-nm diode lasers,” Opt. Lett. 18, 447–449 (1993).
  22. H. Tashiro, M. Uchida, and M. Sato-Maeda, “Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion,” Opt. Eng. 32, 2812–2817 (1993).
  23. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
  24. H. Felgner, O. Muller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–982 (1995).
  25. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Photon. News 7(12), 11–12 (1996).
  26. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997).
  27. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
  28. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
  29. G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
  30. G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, and G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centred Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
  31. T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
  32. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
  33. K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
  34. W. J. Smith, Modern Optical Engineering: the Design of Optical Systems (McGraw-Hill, New York, 1990), p. 179.
  35. H. M. Dobbins and E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. 63, 318–320 (1973).
  36. B. W. Grange, W. H. Stevenson, and R. Viskanta, “Refractive index of liquid solutions at low temperatures: an accurate measurement,” Appl. Opt. 15, 858–859 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited