OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6410–6414

Frequency Stability at the Kilohertz Level of a Rubidium-Locked Diode Laser at 192.114 THz

Ariel Bruner, Vered Mahal, Irena Kiryuschev, Ady Arie, Mark A. Arbore, and Martin M. Fejer  »View Author Affiliations


Applied Optics, Vol. 37, Issue 27, pp. 6410-6414 (1998)
http://dx.doi.org/10.1364/AO.37.006410


View Full Text Article

Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The frequency stability of a 1560-nm diode laser, whose second harmonic was locked to 87Rb sub-Doppler lines, was characterized by measuring the beat frequency relative to a 780-nm reference laser that was locked to sub-Doppler lines of another rubidium cell. The square root of the Allan variance reached a minimum value of 7.5 × 10−12 in 1 s, which corresponded to frequency variations of 1.44 kHz for the 1560-nm laser. The frequency reproducibility of the system was ≈1 × 10−9. These values are better than those that can be achieved by locking to Doppler-broadened transitions at the 1550-nm wavelength band.

© 1998 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(130.4310) Integrated optics : Nonlinear
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.6460) Spectroscopy : Spectroscopy, saturation

Citation
Ariel Bruner, Vered Mahal, Irena Kiryuschev, Ady Arie, Mark A. Arbore, and Martin M. Fejer, "Frequency Stability at the Kilohertz Level of a Rubidium-Locked Diode Laser at 192.114 THz," Appl. Opt. 37, 6410-6414 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6410


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, and D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fiber communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed. Proc. SPIE 1837, 106–114 (1993).
  2. Y. C. Chung, “Frequency-locked 1.3 and 1.5 μm semiconductor lasers for lightwave systems applications,” J. Lightwave. Technol. 8, 869–876 (1990).
  3. O. Ishida and H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave. Technol. 9, 1344–1352 (1991).
  4. H. Sasada and K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
  5. T. Yanagawa, S. Saito, and Y. Yamamoto, “Frequency stabilization of 1.5-μm InGaAs distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984).
  6. Y. Sakai, S. Sudo, and T. Ikegami, “Frequency stabilization of laser diodes using 1.51–1.55 μm absorption lines of 12C2H2 and 13C2H2,” IEEE J. Quantum Electron. 28, 75–81 (1992).
  7. S. Yoshitake, K. Akiyama, M. Iritani, and H. Murayama, “1.55-μm band practical frequency stabilized semiconductor laser using C2H2 or HCN absorption lines,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE 1837, 124–133 (1992).
  8. F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Stabilization of the emission frequency of 1.54 μm DFB laser diodes to Hydrogen Iodide,” IEEE Photon. Technol. Lett. 4, 472–474 (1993).
  9. A. J. Lucero, Y. C. Chung, S. Reilly, and R. W. Tkach, “Saturation measurements of excited state transitions in noble gases using the optogalvanic effect,” Opt. Lett. 16, 849–851 (1991); U. H. P. Fischer and C. V. Helmolt, “Saturation and isotopic shift of the Kr 84 excited-state transition at 1547.825 nm,” IEEE Photon. Technol. Lett. 7, 65–67 (1995).
  10. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
  11. M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High frequency stability laser at 1.5 μm using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
  12. V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
  13. M. Poulin, N. Cyr, C. Latrasse, and M. Tetu, “Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb D2 line and second harmonic generation,” IEEE Trans. Instrum. Meas. 46, 157–161 (1997).
  14. W. Wang, A. M. Akulshin, and M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
  15. A. Bruner, A. Arie, M. A. Arbore, and M. M. Fejer, “Frequency stabilization of a diode laser at 1540 nm by locking to sub-Doppler lines of potassium at 770 nm,” Appl. Opt. 37, 1049–1052 (1998).
  16. M. Zhu and R. W. Standridge, Jr., “Optical frequency standard for optical fiber communication based on the Rb 5s → 5d two-photon transition,” Opt. Lett. 22, 730–732 (1997).
  17. M. Poulin, C. Latrasse, N. Cyr, and M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631–1633 (1997).
  18. A. Arie, M. L. Bortz, M. M. Fejer, and R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
  19. M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
  20. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
  21. A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, and M. M. Fejer, “Frequency stability at the kHz level of Rb-locked diode laser at 1560 nm,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CThL35, p. 378.
  22. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
  23. J. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress,” Proc. IEEE 66, 1048–1074 (1978).
  24. R. Grimm and J. Mlynek, “The effect of resonant light pressure in saturation spectroscopy,” Appl. Phys. B 49, 179–189 (1989).
  25. F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE 1837, 154–163 (1992).
  26. Y. Awaji, K. Nakagawa, M. de Labachelerie, M. Ohtsu, and H. Sasada, “Optical frequency measurement of the H12C14N Lamb-dip-stabilized 1.5-μm diode laser,” Opt. Lett. 20, 2024–2026 (1995).
  27. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited