OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6463–6467

Spectral measurement of the film–substrate index difference in proton-exchanged LiNbO3 waveguides

Kacem El Hadi, Vipul Rastogi, Mangalpady R. Shenoy, Krishna Thyagarajan, Marc De Micheli, and Daniel B. Ostrowsky  »View Author Affiliations


Applied Optics, Vol. 37, Issue 27, pp. 6463-6467 (1998)
http://dx.doi.org/10.1364/AO.37.006463


View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the spectral characterization of proton-exchanged lithium niobate (PE:LiNbO3) waveguides in terms of the variation of the refractive-index difference between the waveguiding layer and the substrate. The dispersion of the extraordinary refractive-index increase (δn e ) is measured from 405 to 1319 nm with several light sources. Two types of proton-exchanged waveguide, prepared under different conditions, are studied. These measurements should be of use in the optimization of PE:LiNbO3 waveguides for nonlinear optical applications, particularly in second-harmonic generation in the blue-green wavelength region.

© 1998 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(160.3730) Materials : Lithium niobate
(160.4330) Materials : Nonlinear optical materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7390) Optical devices : Waveguides, planar
(310.2790) Thin films : Guided waves

History
Original Manuscript: September 15, 1997
Revised Manuscript: April 14, 1998
Published: September 20, 1998

Citation
Kacem El Hadi, Vipul Rastogi, Mangalpady R. Shenoy, Krishna Thyagarajan, Marc De Micheli, and Daniel B. Ostrowsky, "Spectral measurement of the film–substrate index difference in proton-exchanged LiNbO3 waveguides," Appl. Opt. 37, 6463-6467 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. De Micheli, D. Ostrowsky, F. Laurell, “Quasi-phase-matched parametric interactions in proton exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997). [CrossRef]
  2. E. J. Lim, M. M. Fejer, R. L. Byer, “Second harmonic generation of green light in periodically poled lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989). [CrossRef]
  3. J. Webjörn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989). [CrossRef]
  4. J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982). [CrossRef]
  5. M. Minakata, K. Kumagai, S. Kawakami, “Lattice constant changes and electro-optic effects in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 49, 992–994 (1986). [CrossRef]
  6. M. De Micheli, D. Ostrowsky, J. P. Baretty, C. Canali, A. Carnera, G. Mazzi, M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” IEEE J. Lightwave Technol. 4, 743–745 (1986). [CrossRef]
  7. Yu. N. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, “Relationship between structural and optical properties of proton exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996). [CrossRef] [PubMed]
  8. M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett. 8, 114–115 (1983). [CrossRef] [PubMed]
  9. M. Digonnet, M. Fejer, R. Byer, “Characterization of proton-exchanged waveguides in MgO:LiNbO3,” Opt. Lett. 10, 235–237 (1985). [CrossRef] [PubMed]
  10. M. L. Bortz, M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991). [CrossRef] [PubMed]
  11. X. F. Cao, R. V. Ramaswami, R. Srivastava, “Characterization of annealed proton-exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992). [CrossRef]
  12. P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, M. Papuchon, “Modelling and experimental observations of parametric fluorescence in periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 31, 997–1006 (1995). [CrossRef]
  13. P. G. Suchoski, T. K. Findakly, F. J. Leonberger, “Stable low-loss proton-exchanged waveguide devices with no electro-optic degradation,” Opt. Lett. 13, 1050–1052 (1988). [CrossRef] [PubMed]
  14. M. J. Li, M. P. De Micheli, D. B. Ostrowsky, M. Papuchon, “High index low loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987). [CrossRef]
  15. M. De Micheli, D. B. Ostrowsky, Y. N. Korkishko, P. Bassi, “Proton exchange waveguides in LiNbO3 and LiTaO3: structural and optical properties,” in Insulating Materials for Optoelectronics: New Developments, F. Agullo-Lopez, ed. (World Scientific, Singapore, 1995), Chap. 12, pp. 329–366. [CrossRef]
  16. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). [CrossRef] [PubMed]
  17. M. V. Hobden, J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966). [CrossRef]
  18. J. M. White, P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices in a simple analysis,” Appl. Opt. 15, 151–155 (1976). [CrossRef] [PubMed]
  19. E. M. Conwell, “Modes in optical waveguides formed by diffusion,” Appl. Phys. Lett. 23, 328–329 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited