OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6480–6486

Modeling of direct detection Doppler wind lidar. I. The edge technique

Jack A. McKay  »View Author Affiliations


Applied Optics, Vol. 37, Issue 27, pp. 6480-6486 (1998)
http://dx.doi.org/10.1364/AO.37.006480


View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Analytic models, based on a convolution of a Fabry–Perot etalon transfer function with a Gaussian spectral source, are developed for the shot-noise-limited measurement precision of Doppler wind lidars based on the edge filter technique by use of either molecular or aerosol atmospheric backscatter. The Rayleigh backscatter formulation yields a map of theoretical sensitivity versus etalon parameters, permitting design optimization and showing that the optimal system will have a Doppler measurement uncertainty no better than approximately 2.4 times that of a perfect, lossless receiver. An extension of the models to include the effect of limited etalon aperture leads to a condition for the minimum aperture required to match light collection optics. It is shown that, depending on the choice of operating point, the etalon aperture finesse must be 4–15 to avoid degradation of measurement precision. A convenient, closed-form expression for the measurement precision is obtained for spectrally narrow backscatter and is shown to be useful for backscatter that is spectrally broad as well. The models are extended to include extrinsic noise, such as solar background or the Rayleigh background on an aerosol Doppler lidar. A comparison of the model predictions with experiment has not yet been possible, but a comparison with detailed instrument modeling by McGill and Spinhirne shows satisfactory agreement. The models derived here will be more conveniently implemented than McGill and Spinhirne’s and more readily permit physical insights to the optimization and limitations of the double-edge technique.

© 1998 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: January 29, 1998
Revised Manuscript: May 28, 1998
Published: September 20, 1998

Citation
Jack A. McKay, "Modeling of direct detection Doppler wind lidar. I. The edge technique," Appl. Opt. 37, 6480-6486 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996). [CrossRef]
  2. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995). [CrossRef]
  3. R. Targ, R. L. Bowles, C. L. Korb, B. M. Gentry, D. Souilhac, “Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement,” in Image Understanding for Aerospace Applications, H. N. Nasr, ed., Proc. SPIE1521, 144–157 (1991). [CrossRef]
  4. Zhi-shen Liu, Wei-biao Chen, J. W. Hair, C. Y. She, “Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling,” in Application of Lidar to Current Atmospheric Topics, A. J. Sedlacek, ed., Proc. SPIE2833, 128–135 (1996). [CrossRef]
  5. M. J. McGill, J. D. Spinhirne, “A comparison of two direct-detection Doppler lidar techniques,” Opt. Eng.37, (1998).
  6. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging techniques,” Appl. Opt. 37, 6487–6493 (1998). [CrossRef]
  7. M. L. Chanin, A. Garnier, A. Hauchecorn, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989). [CrossRef]
  8. C. L. Korb, B. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324; C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992). [CrossRef] [PubMed]
  9. B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994). [CrossRef] [PubMed]
  10. C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997). [CrossRef] [PubMed]
  11. A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992). [CrossRef]
  12. M. L. Chanin, A. Hauchecorne, A. Garnier, D. Nedelikovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994). [CrossRef]
  13. C. Flesia, C. L. Korb are preparing the following paper for publication: “Theory of the double-edge molecular technique for Doppler lidar wind measurement.” C. Flesia, Université de Genève, 1211 Genève 04, Switzerland (personal communication, 1998).
  14. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1988), Eq. 2.2.2b.
  15. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  16. C. S. Gardner, “Optical remote sensing techniques for measuring winds: a comparison of theoretical performance capabilities,” viewgraph presentation at Winds ’97, the Third Workshop on Wind Measurements in the Middle Atmosphere, Ann Arbor, Mich.6–9 October 1997; C. S. Gardner, University of Illinois, Urbana, Ill. 61801 (personal communication, 1997).
  17. B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995). [CrossRef] [PubMed]
  18. D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996). [CrossRef]
  19. D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994). [CrossRef]
  20. J. A. McKay, “The edge filter and fringe imaging for laser Doppler wind speed measurement,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 420–427 (1997). [CrossRef]
  21. J. A. McKay, T. D. Wilkerson, “Direct detection wind speed Doppler lidar systems,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 42–52 (1997). [CrossRef]
  22. W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994). [CrossRef]
  23. M. J. McGill, NASA-Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 1997).
  24. M. J. McGill, W. R. Skinner, T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited