OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6487–6493

Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique

Jack A. McKay  »View Author Affiliations


Applied Optics, Vol. 37, Issue 27, pp. 6487-6493 (1998)
http://dx.doi.org/10.1364/AO.37.006487


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple analytic model is developed for the shot-noise-limited measurement precision of Doppler wind lidars based on the fringe imaging technique by use of either molecular or aerosol atmospheric backscatter. The model leads to etalon design parameters for an instrument optimized for precision. The ultimate measurement precision possible is two to four times the limit for a perfect, lossless receiver. The corresponding result for the double-edge Doppler analyzer was a ratio of 2.5, showing that the two methods are little different in this respect. For aerosol backscatter instruments, the wind speed dynamic range of the fringe imager is substantially greater than that for the edge detector. The etalon aperture needed to meet system etendue requirements is derived and shown to be approximately half that of each of the two etalons required by the double-edge technique. A comparison with more detailed modeling of fringe imaging Doppler-shift analyzers shows good agreement for the Rayleigh model and fair for the aerosol version, confirming the validity of this simpler technique for analyzer design and performance prediction.

© 1998 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: January 29, 1998
Revised Manuscript: May 28, 1998
Published: September 20, 1998

Citation
Jack A. McKay, "Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique," Appl. Opt. 37, 6487-6493 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6487


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998). [CrossRef]
  2. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995). [CrossRef]
  3. M. J. McGill, J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng.37, (October1998).
  4. P. B. Hays, R. G. Roble, “A technique for recovering Doppler line profiles from Fabry-Perot interferometer fringes of very low intensity,” Appl. Opt. 10, 193–200 (1971). [CrossRef] [PubMed]
  5. J.-M. Gagné, J.-P. Saint-Dizier, M. Picard, “Méthode d’echantillonage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974). [CrossRef]
  6. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  7. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1988), Eq. 2.2.2b.
  8. C. S. Gardner, “Optical remote sensing techniques for measuring winds: a comparison of theoretical performance capabilities,” viewgraph presentation at Winds ’97, the Third Workshop on Wind Measurements in the Middle Atmosphere, Ann Arbor, Mich., 6–9 October 1997; C. Gardner, University of Illinois, Urbana, Ill. 61801 (personal communication, 1997).
  9. J. A. McKay, “The edge filter and fringe imaging for laser Doppler wind speed measurement,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 420–427 (1997). [CrossRef]
  10. J. A. McKay, T. D. Wilkerson, “Direct detection wind speed Doppler lidar systems,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 42–52 (1997). [CrossRef]
  11. G. Hernandez, “Analytical description of a Fabry-Perot spectrometer. 4: Signal noise limitations in data retrieval; winds, temperature, and emission rate,” Appl. Opt. 17, 2967–2972 (1978). [CrossRef] [PubMed]
  12. W. R. Skinner, P. B. Hays, “Incoherent Doppler lidar for measurement of atmospheric winds,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, 383–394 (1994). [CrossRef]
  13. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983). [CrossRef]
  14. T. L. Killeen, P. B. Hays, “Doppler line profile analysis for a multichannel Fabry-Perot interferometer,” Appl. Opt. 23, 612–620 (1984). [CrossRef] [PubMed]
  15. W. R. Skinner, P. B. Hays, “A comparative study of coherent and incoherent Doppler lidar techniques,” Marshall Space Flight Center Study Report, contract NAS8-38775 (University of Michigan, Ann Arbor, Mich., 1994). The equation in this publication is in error by a factor √2 [confirmed by W. R. Skinner, University of Michigan, Ann Arbor, Mich. 48109 (personal communication, 1997)].
  16. D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, W. Singer, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996). [CrossRef]
  17. D. Rees, Hovemere Ltd., Keston, Kent BR2 6AN United Kingdom (personal communication, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited