OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 27 — Sep. 20, 1998
  • pp: 6550–6557

Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics

Arthur H. Carrieri, Jerold R. Bottiger, David J. Owens, and Erik S. Roese  »View Author Affiliations


Applied Optics, Vol. 37, Issue 27, pp. 6550-6557 (1998)
http://dx.doi.org/10.1364/AO.37.006550


View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The complete 16-element Mueller matrices for backscattering from amino acids, sugars, and other enantiomorphic compounds pressed into wafer form were measured at infrared wavelengths. For each compound a pair of CO2 laser lines was selected from the 9.1–11.6-μm region such that one line excited an absorption band in the compound, whereas the other did not. It was observed that at least some of the matrix elements differed significantly depending on which of the two wavelengths was used in the measurement. We propose that a neural network pattern recognition system can be trained to detect the presence of specific compounds based on multiwavelength backscatter Mueller matrix measurements.

© 1998 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering
(300.0300) Spectroscopy : Spectroscopy

History
Original Manuscript: January 26, 1998
Revised Manuscript: May 28, 1998
Published: September 20, 1998

Citation
Arthur H. Carrieri, Jerold R. Bottiger, David J. Owens, and Erik S. Roese, "Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics," Appl. Opt. 37, 6550-6557 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Azzam, “Polarimeter,” U.S. patent4,306,809 (22December1981).
  2. B. DeVolk, F. Allen, C. D. Newman, R. J. Fraatz, “Particle identifying apparatus,” U.S. patent4,953,980 (4September1990).
  3. G. C. Salzman, C. T. Gregg, W. K. Grace, R. D. Hiebert, “Biological particle identification apparatus,” U.S. patent4,884,886 (12December1989).
  4. D. H. Goldstein, “Infrared laser polarimeter,” U.S. patent5,247,176 (21September1993).
  5. A. H. Carrieri, “Earth monitoring satellite system for chemical and biological defense,” U.S. patent5,659,391 (19August1997).
  6. A. H. Carrieri, “Panoramic infrared-imaging spectroradiometer with reverse phase-modulation beam broadcasting,” U.S. patent5,708,503 (13January1998).
  7. A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973). [CrossRef]
  8. R. C. Thompson, J. R. Bottiger, E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1329 (1980). [CrossRef] [PubMed]
  9. E. Wold, J. Bremer, “Mueller matrix analysis of infrared ellipsometry,” Appl. Opt. 33, 5982–5993 (1994). [CrossRef] [PubMed]
  10. D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, A. Chipman, eds., Proc. SPIE1746, 231–245 (1992). [CrossRef]
  11. M. A. F. Thiel, “Error calculation of polarization measurements,” J. Opt. Soc. Am. 66, 65–67 (1976). [CrossRef]
  12. D. H. Goldman, R. A. Chipman, D. B. Chenault, R. R. Hodgson, “Infrared material property measurements with polarimetry and spectropolarimetry,” in Electro-Optic Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartman, M. J. Soileau, K. Varadan, eds., Proc. SPIE1307, 448–462 (1990). [CrossRef]
  13. D. H. Goldman, R. A. Chipman, D. B. Chenault, “Spectropolarimetry of electro-optical materials,” in Polarization Considerations for Optical Systems, R. A. Chipman, ed., Proc. SPIE891, 56–73 (1988). [CrossRef]
  14. A. Röseler, “Die Anwendung der Mueller matrix auf die spektroskopische Infrarot-Ellipsometrie mit dem Fourierspektrometer,” Optik (Stuttgart) 61, 177–186 (1981).
  15. A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).
  16. G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1945), Vol. 2.
  17. D. C. Tyte, “Carbon dioxide lasers,” in Advances in Quantum Electronics, D. W. Goodwin, ed. (Academic, London, 1970), Vol. 1.
  18. R. J. Keller, ed., The Sigma Library of FT-IR Spectra, 1st ed. (Sigma Chemical Co., St. Louis, MO., 1986), Vols. 1–2.
  19. C. J. Pouchert, ed., The Aldrich Library of FT-IR Spectra, 1st ed., (Aldrich Chemical Company, Inc., Milwaukee, Wis., 1989), Vols. 1–3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited