OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 28 — Oct. 1, 1998
  • pp: 6591–6602

Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary-element method and scalar approximation

Elias N. Glytsis, Michael E. Harrigan, Thomas K. Gaylord, and Koichi Hirayama  »View Author Affiliations


Applied Optics, Vol. 37, Issue 28, pp. 6591-6602 (1998)
http://dx.doi.org/10.1364/AO.37.006591


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of fabrication errors on the performance of collimating finite-thickness cylindrical diffractive lenses with eight discrete levels are investigated with a rigorous boundary-element method and a scalar approach. The photolithographic fabrication errors considered are mask alignment errors, exposure errors (that result in linewidth errors), and etch-depth errors. A cylindrical Gaussian beam of TE or TM polarization is incident upon the resulting lenses. Lenses of F/4, F/2, and F/1.4 are examined. The diffraction efficiencies of the lenses with fabrication errors are generally lower than the error-free lenses with the most severe performance degradation occurring for mask misalignment and exposure errors.

© 1998 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1940) Diffraction and gratings : Diffraction
(050.1970) Diffraction and gratings : Diffractive optics
(120.1680) Instrumentation, measurement, and metrology : Collimation
(350.3950) Other areas of optics : Micro-optics

History
Original Manuscript: March 17, 1998
Revised Manuscript: June 17, 1998
Published: October 1, 1998

Citation
Elias N. Glytsis, Michael E. Harrigan, Thomas K. Gaylord, and Koichi Hirayama, "Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary-element method and scalar approximation," Appl. Opt. 37, 6591-6602 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-28-6591


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics XXIV, E. Wolf, ed. (North-Holland, Amsterdam, 1987), pp. 1–40. [CrossRef]
  2. J. R. Leger, M. G. Moharam, T. K. Gaylord, eds., Feature Issue on Diffractive Optics Applications, Appl. Opt. 34, 2399–2559 (1995).
  3. H. M. Ozaktas, H. Urey, A. W. Lohmann, “Scaling of diffractive and refractive lenses for optical computing and interconnections,” Appl. Opt. 33, 3782–3789 (1994). [CrossRef] [PubMed]
  4. K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994). [CrossRef] [PubMed]
  5. J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990). [CrossRef]
  6. J. A. Cox, B. Fritz, T. Werner, “Process error limitations on binary optics performance,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 80–88 (1991). [CrossRef]
  7. M. Ferstl, B. Kuhlow, E. Pawlowski, “Effect of fabrication errors on multilevel Fresnel zone lenses,” Opt. Eng. 33, 1229–1235 (1994). [CrossRef]
  8. M. W. Farn, J. W. Goodman, “Effect of VLSI fabrication errors on kinoform efficiency,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 125–136 (1990). [CrossRef]
  9. K. M. Flood, J. M. Finlan, R. J. Bojko, “Multiple phase level computer-generated holograms etched in fused silica,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. SPIE1052, 91–96 (1989). [CrossRef]
  10. J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519–2525 (1993). [CrossRef] [PubMed]
  11. D. W. Ricks, “Scattering from diffractive optics,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR-49 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1993), pp. 187–211.
  12. D. W. Ricks, “Light scattering from binary optics,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 89–100 (1991). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  14. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
  15. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  16. M. G. Moharam, T. K. Gaylord, J. R. Leger, eds., Feature Issue on Diffractive Optics Modeling, J. Opt. Soc. Am. A 12, 1026–1169 (1995).
  17. E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
  18. F. Montiel, M. Nevière, “Electromagnetic theory of Bragg–Fresnel linear zone plates,” J. Opt. Soc. Am. A 12, 2672–2678 (1995). [CrossRef]
  19. A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995). [CrossRef]
  20. J. Popelek, F. Urban, “The vector analysis of the real diffractive optical elements,” in Nonconventional Optical Imaging Elements, J. Nowak, M. Zajac, eds., Proc. SPIE2169, 89–99 (1994). [CrossRef]
  21. M. Kuittinen, J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997). [CrossRef]
  22. B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994). [CrossRef]
  23. K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996). [CrossRef]
  24. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  25. M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997). [CrossRef]
  26. E. N. Glytsis, M. E. Harrigan, K. Hirayama, T. K. Gaylord, “Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation,” Appl. Opt. 37, 34–43 (1998). [CrossRef]
  27. M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996). [CrossRef]
  28. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997). [CrossRef]
  29. T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Pt. 2 74, 11–20 (1991). [CrossRef]
  30. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991), Chap. 6.
  31. S. Solimeno, B. Crosignani, A. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986), Chap. 4.
  32. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 20.
  33. D. A. Buralli, G. M. Morris, J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976–983 (1989). [CrossRef] [PubMed]
  34. M. Rossi, R. E. Kunz, H. P. Herzig, “Refractive and diffractive properties of planar micro-optical elements,” Appl. Opt. 34, 5996–6007 (1995). [CrossRef] [PubMed]
  35. R. Kingslake, Optical System Design (Academic, Orlando, Fla., 1983), p. 124.
  36. P. K. Banerjee, R. Butterfield, eds., Developments in Boundary Element Methods (Applied Science, London, 1979).
  37. M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, Tokyo, 1992), pp. 43–47.
  38. M. E. Motamedi, R. J. Anderson, R. de la Rosa, L. G. Hale, W. J. Gunning, R. L. Hall, M. Khoshnevisan, “Binary optics thin film microlens array,” in Miniature and MicroOptics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 22–32 (1992). [CrossRef]
  39. Z. Zhou, T. J. Drabik, “Optimized binary, phase-only, diffractive optical element with subwavelength features for 1.55 μm,” J. Opt. Soc. Am. A 12, 1104–1112 (1995). [CrossRef]
  40. S. Babin, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, W. Stork, N. Streibl, “Artificial index surface relief diffraction optical elements,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 202–213 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited