OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 28 — Oct. 1, 1998
  • pp: 6643–6647

Measurements of submillimeter polarization induced by oblique reflection from aluminum alloy

Tom Renbarger, Jessie L. Dotson, and Giles Novak  »View Author Affiliations


Applied Optics, Vol. 37, Issue 28, pp. 6643-6647 (1998)
http://dx.doi.org/10.1364/AO.37.006643


View Full Text Article

Enhanced HTML    Acrobat PDF (87 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have measured the linear polarization induced in a beam of submillimeter radiation when it is obliquely reflected by a flat mirror made of aluminum alloy. For angles of incidence in the range 15°–45°, we measured induced polarizations in the range 0.05%–0.25%. Our measurements are within a factor of 2 of theoretical predictions. We conclude that astronomical telescopes that incorporate oblique reflections from good conductors will not introduce spurious polarizations large enough to cause significant problems for submillimeter polarimetric observations.

© 1998 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(120.5700) Instrumentation, measurement, and metrology : Reflection
(350.1260) Other areas of optics : Astronomical optics

History
Original Manuscript: February 18, 1998
Revised Manuscript: June 1, 1998
Published: October 1, 1998

Citation
Tom Renbarger, Jessie L. Dotson, and Giles Novak, "Measurements of submillimeter polarization induced by oblique reflection from aluminum alloy," Appl. Opt. 37, 6643-6647 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-28-6643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Hildebrand, J. L. Dotson, C. D. Dowell, S. R. Platt, D. Schleuning, J. A. Davidson, G. Novak, “Far-infrared polarimetry,” in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, M. R. Haas, J. A. Davidson, E. F. Erickson, eds., Vol. 73 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1995), pp. 97–104.
  2. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978).
  3. R. H. Hildebrand, J. A. Davidson, J. Dotson, D. F. Figer, G. Novak, S. R. Platt, L. Tao, “Polarization of the thermal emission from the dust ring at the center of the galaxy,” Astrophys. J. 417, 565–571 (1993). [CrossRef]
  4. D. P. Gonatas, X. D. Wu, G. Novak, R. H. Hildebrand, “Systematic effects in the measurement of far-infrared linear polarization,” Appl. Opt. 28, 1000–1006 (1989). [CrossRef] [PubMed]
  5. D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997). [CrossRef]
  6. E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981).
  7. E. J. Wollack, “A measurement of the degree scale cosmic background radiation anisotropy at 27.5, 30.5, and 33.5 GHz,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1994), pp. 147–156.
  8. J. Xu, A. E. Lange, J. J. Bock, “Far-infrared emissivity measurements of reflective surfaces,” in Submillimetre and Far-Infrared Space Instrumentation, Proceedings of the 30th ESLAB Symposium (ESTEC, Noordwijk, The Netherlands, 1996), pp. 69–72.
  9. H. London, “The high-frequency resistance of superconducting tin,” Proc. R. Soc. London Ser. A 176, 522–533 (1940). [CrossRef]
  10. A. B. Pippard, “The surface impedance of superconductors and normal metals. II. The anomalous skin effect in normal metals,” Proc. R. Soc. London Ser. A 191, 385–399 (1947). [CrossRef]
  11. G. E. H. Reuter, E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. London Ser. A 195, 336–364 (1948). [CrossRef]
  12. R. B. Dingle, “The anomalous skin effect and the reflectivity of Metals. I,” Physica 19, 311–347 (1953). [CrossRef]
  13. A. P. van Gelder, “Quantum corrections in the theory of the anomalous skin effect,” Phys. Rev. 187, 833–842 (1969). [CrossRef]
  14. S. Iganaki, E. Ezura, J.-F. Liu, H. Nakanishi, “Thermal expansion and microwave surface reactance of copper for the normal to anomalous skin effect region,” J. Appl. Phys. 82, 5401–5410 (1997). [CrossRef]
  15. S. P. Morgan, “Effect of surface roughness on eddy current losses at microwave frequencies,” J. Appl. Phys. 20, 352–362 (1949). [CrossRef]
  16. J. Ruze, “The effect of aperture errors on the antenna radiation pattern,” Nuovo Cimento Suppl. 9, 364–380 (1953). [CrossRef]
  17. “Aluminum 6061,” in Alloy Digest, filing code Al-205 (Engineering Alloy Digest, Upper Montclair, N.J., 1973), Part 1.
  18. H. P. Myers, Introductory Solid State Physics (Taylor & Francis, Bristol, Pa., 1981).
  19. M. Dragovan, “Submillimeter polarization in the Orion nebula,” Astrophys. J. 308, 270–280 (1986). [CrossRef]
  20. G. Novak, D. P. Gonatas, S. R. Platt, R. H. Hildebrand, “A 100-μm polarimeter for the Kuiper airborne observatory,” Proc. Astron. Soc. Pac. 101, 215–224 (1989). [CrossRef]
  21. S. E. Whitcomb, J. Keene, “Low-pass interference filters for submillimeter astronomy,” Appl. Opt. 19, 197–198 (1980). [CrossRef] [PubMed]
  22. R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970). [CrossRef]
  23. R. Winston, W. T. Welford, “Geometrical vector flux and some new nonimaging concentrators,” J. Opt. Soc. Am. 69, 532–536 (1979). [CrossRef]
  24. T. Renbarger, J. L. Dotson, G. Novak, “An estimate of telescope polarization for the SPARO experiment,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of ASP Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 205–207.
  25. “Aluminum 2024,” and “Aluminum 7075,” in Alloy Digest, filing codes Al-23 and Al-179 (Engineering Alloy Digest, Upper Montclair, N.J., 1973), part 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited