OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 28 — Oct. 1, 1998
  • pp: 6671–6676

Experimental method for high-accuracy reflectivity-spectrum measurements

Claude-Albert Berseth, Arthur Schönberg, Oliver Dehaese, Klaus Leifer, Alok Rudra, and Eli Kapon  »View Author Affiliations


Applied Optics, Vol. 37, Issue 28, pp. 6671-6676 (1998)
http://dx.doi.org/10.1364/AO.37.006671


View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental method for accurate measurements of the reflectivity spectrum of mirrors is presented. It combines the noise reduction obtained with multiple beam reflections on two identical mirrors; high-beam quality, owing to the use of single-mode optical fibers; and high immunity against intensity variations of the beam. This method is demonstrated for characterizing a 30-period GaAs/Al0.65Ga0.35As distributed Bragg reflector designed for long-wavelength vertical-cavity surface-emitting lasers. Its peak reflectivity is found to be 99.43 ± 0.04% at 1.562 μm, and an optical absorption coefficient of α = 36 ± 6 cm-1 is derived. The peak internal reflectivity of this distributed Bragg reflector used as the top mirror in a wafer-fused vertical-cavity surface-emitting laser is calculated to be 98.87 ± 0.12%, and the transmission is 0.28%.

© 1998 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(220.4840) Optical design and fabrication : Testing
(230.4040) Optical devices : Mirrors
(230.4170) Optical devices : Multilayers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

History
Original Manuscript: February 19, 1998
Revised Manuscript: July 13, 1998
Published: October 1, 1998

Citation
Claude-Albert Berseth, Arthur Schönberg, Oliver Dehaese, Klaus Leifer, Alok Rudra, and Eli Kapon, "Experimental method for high-accuracy reflectivity-spectrum measurements," Appl. Opt. 37, 6671-6676 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-28-6671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. L. Gourley, P. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1–xAs for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986). [CrossRef]
  2. A. Chailertvanitkul, K. Iga, K. Moriki, “GaInAsP/InP surface emitting laser (λ = 1.4 μm, 77 K) with heteromultilayer Bragg reflector,” Electron. Lett. 21, 303–304 (1985). [CrossRef]
  3. K. Streubel, S. Rapp, J. André, J. Wallin, “Room temperature pulsed operation of 1.55-μm vertical cavity laser with an InP-based Bragg reflector,” IEEE Photonics Technol. Lett. PTL-8, 1121–1123 (1996). [CrossRef]
  4. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
  5. P. Guy, K. Woodbridge, S. K. Haywood, M. Hopkinson, “Highly doped 1.55 μm GaxIn1–xAs/InP distributed Bragg reflector stacks,” Electron. Lett. 30, 1526–1527 (1994). [CrossRef]
  6. S. W. Corzine, “Design of vertical-cavity surface emitting lasers with strained and unstrained quantum well active regions,” Ph.D. dissertation (University of California, Santa Barbara, Calif., 1993).
  7. D. I. Babic, J. Piprek, K. Streubel, R. P. Mirin, N. M. Margalit, D. E. Mars, J. E. Bowers, E. L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers,” IEEE J. Quantum Electron. QE-33, 1369–1383 (1997). [CrossRef]
  8. K. Tai, L. Yang, Y. H. Wang, J. D. Wynn, A. Y. Cho, “Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers,” Appl. Phys. Lett. 56, 2496–2498 (1990). [CrossRef]
  9. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces,” Ann. Phys. (Paris) 12, 596–640 and 707–781 (1950).
  10. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, London, 1986). [CrossRef]
  11. M. A. Afromowitz, “Refractive index of Ga1–xAlxAs,” Solid State Commun. 15, 59–63 (1974). [CrossRef]
  12. R. Baets, P. Demeester, P. E. Lagasse, “High-reflectivity GaAs-AlGaAs mirrors: sensitivity analysis with respect to epitaxial growth parameters,” J. Appl. Phys. 62, 723–727 (1987). [CrossRef]
  13. C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers,” IEEE J. Quantum Electron. QE-19, 947–952 (1983). [CrossRef]
  14. C.-A. Berseth, A. V. Syrbu, V. P. Iakovlev, O. Dehaese, A. Rudra, E. Kapon, “Highly accurate measurement of reflectivity and optical absorption in distributed Bragg reflectors using a wafer-fused resonator,” Electron. Lett. (to be published).
  15. Unfortunately, the mirror measured in this paper was completely used up during the fabrication of VCSEL’s, so no samples were left for comparative measurements with the technique of the fused resonator.
  16. Z. L. Ziao, D. E. Mull, “Wafer fusion—a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990). [CrossRef]
  17. J. Behrend, A. Rudra, L. Sagalowicz, C.-A. Berseth, J.-F. Carlin, A. Schoenberg, P. H. Jouneau, E. Kapon, “Structural and optical characterisation of InP/InGaAsP distributed Bragg reflectors grown by CBE,” in Proceedings of the Ninth International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 428–431.
  18. F. K. Reinhart, R. A. Logan, “Interface stress of AlxGa1–xAs–GaAs layer structures,” J. Appl. Phys. 44, 3171–3175 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited