OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 28 — Oct. 1, 1998
  • pp: 6755–6763

Polarization properties of inversely twisted nematic liquid-crystal gratings

Zhan He and Susumu Sato  »View Author Affiliations

Applied Optics, Vol. 37, Issue 28, pp. 6755-6763 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the Jones matrix representation of twisted nematic liquid crystals (LC’s), we have carried out a theoretical analysis of the polarization properties of inversely twisted nematic (ITN) LC gratings. Some interesting polarization behaviors are expected in the ITN LC grating. When a linearly polarized light parallel or perpendicular to the grating direction is incident on the ITN LC grating, the diffracted light in the 0th order is linearly polarized with the same polarization direction of incident light, while the diffracted light in high orders is linearly polarized perpendicular to that of incident light. Using a multirubbing alignment technique, we have practically prepared an ITN LC grating with ±45° inversely twisted structures. The experimental investigations of the optical characteristics of the ITN LC grating demonstrate agreement with theoretical expectations.

© 1998 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(260.5430) Physical optics : Polarization

Original Manuscript: March 23, 1998
Revised Manuscript: June 29, 1998
Published: October 1, 1998

Zhan He and Susumu Sato, "Polarization properties of inversely twisted nematic liquid-crystal gratings," Appl. Opt. 37, 6755-6763 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Murai, “Electro-optic properties of liquid crystal phase gratings and their simulation using a homogeneous alignment model,” Liq. Cryst. 15, 627–642 (1993). [CrossRef]
  2. M. W. Fritsch, C. Kohler, G. Haas, H. Wohler, D. A. Mlynski, “Diffraction properties of rectangular phase gratings in a liquid crystal phase modulator,” Mol. Cryst. Liq. Cryst. 198, 1–14 (1991). [CrossRef]
  3. G. P. Nordin, J. H. Kulick, R. G. Lindquist, P. J. Nasiatka, M. W. Jones, M. Friends, S. T. Kowel, “Liquid crystal-on-silicon implementation of the partial pixel three-dimensional display architecture,” Appl. Opt. 34, 3756–3763 (1995). [CrossRef] [PubMed]
  4. S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal gratings,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994). [CrossRef]
  5. B. H. Soffer, J. D. Margerum, A. M. Lackner, D. Boswell, A. R. Tanguay, T. C. Strand, A. A. Sawchuk, P. Chavel, “Variable grating mode liquid crystal device for optical processing and computing,” Mol. Cryst. Liq. Cryst. 70, 145–161 (1981). [CrossRef]
  6. W. M. Gibbons, S. T. Sun, “Optically generated liquid crystal grating,” Appl. Phys. Lett. 65, 2542–2544 (1994). [CrossRef]
  7. J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995). [CrossRef]
  8. T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystal cells as diffractive optical elements,” in Organic Thin Films, Vol. 21 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 160–161.
  9. T. Kosa, P. Palffy-Muhoray, “Optically aligned liquid crystals: physics and applications,” Pure Appl. Opt. 5, 595–602 (1996). [CrossRef]
  10. P. J. Bos, J. Chen, J. W. Doane, B. Smith, C. Holton, W. Glenn, “An optically active diffractive device for a high-efficiency light valve,” in Technical Digest, Society for Information Display International Symposium, Orlando, Fla. (Society for Information Display, Santa Ana, Calif., 1995), Vol. 26, pp. 601–604.
  11. L. M. Titus, P. J. Bos, C. Holton, W. Glenn, “Efficient polarization-independent reflective liquid-crystal phase gratings,” in Technical Digest, Society for Information Display International Symposium, Boston (Society for Information Display, Santa Ana, Calif., 1997), Vol. 28, pp. 769–772.
  12. M. Lu, K. H. Yang, “LC phase-gratings for reflective spatial light modulators,” in Conference Record of the 1997 International Display Research Conference, Toronto (Society for Information Display, Santa Ana, Calif., 1997), pp. 167–170.
  13. A. R. Tanguay, P. Chavel, T. C. Strand, C. S. Wu, “Polarization properties of the variable-grating-mode liquid-crystal device,” Opt. Lett. 9, 174–176 (1984). [CrossRef] [PubMed]
  14. K. A. Suresh, P. B. S. Kumar, G. S. Ranganath, “Optical diffraction in twisted liquid-crystalline media-phase grating mode,” Liq. Cryst. 11, 73–82 (1992). [CrossRef]
  15. Z. He, T. Nose, S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529–3530 (1996). [CrossRef]
  16. Z. He, T. Nose, S. Sato, “Polarization modulation of a nematic liquid crystal grating,” in Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 328–331 (1996). [CrossRef]
  17. Z. He, T. Nose, S. Sato, “Polarization properties of a liquid crystal phase grating,” Mol. Cryst. Liq. Cryst. 301, 295–300 (1997). [CrossRef]
  18. Y. Zhou, Z. He, S. Sato, “A novel method for determining the cell thickness and twisted angle of a twisted nematic cell by measuring Stokes parameters,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997). [CrossRef]
  19. Z. He, Y. Zhou, S. Sato, “A 2-dimensional Stokes parameter method for determination of cell thickness and twisted angle distributions in twisted nematic liquid crystal devices,” Jpn. J. Appl. Phys. 37, 1982–1988 (1998). [CrossRef]
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New Year, 1968), pp. 4–29.
  21. C. H. Gooch, H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited