OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 28 — Oct. 1, 1998
  • pp: 6833–6844

Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption

Xingde Li, Britton Chance, and Arjun G. Yodh  »View Author Affiliations


Applied Optics, Vol. 37, Issue 28, pp. 6833-6844 (1998)
http://dx.doi.org/10.1364/AO.37.006833


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fundamental limits for detection and characterization of fluorescent (phosphorescent) inhomogeneities embedded in tissuelike highly scattering turbid media are investigated. The absorption and fluorescence contrast introduced by exogenous fluorophores are also compared. Both analyses are based on practical signal-to-noise ratio considerations. For an object with fivefold fluorophore concentration and lifetime contrast with respect to the background tissue, we find the smallest detectable fluorescent object at 3-cm depth in tissuelike turbid media to be ∼0.25 cm in radius, whereas the smallest characterizable object size is ∼0.75 cm in radius, given a model with 1% amplitude and 0.5° phase noise. We also find that, for fluorescence extinction coefficients ∊ ≤ 0.5 × 105 cm-1 M-1, the fluorescence measurement mode is superior to the absorption mode for detecting an inhomogeneity. The optimal choice of modulation frequency for the frequency-domain fluorescence measurements is also discussed.

© 1998 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.5270) Medical optics and biotechnology : Photon density waves
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: March 4, 1998
Revised Manuscript: June 3, 1998
Published: October 1, 1998

Citation
Xingde Li, Britton Chance, and Arjun G. Yodh, "Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption," Appl. Opt. 37, 6833-6844 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-28-6833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 31–36 (1995). and references therein,.
  2. See related studies in B. Chance, R. R. Alfano, A. Katzir, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).
  3. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997). [CrossRef] [PubMed]
  4. R. A. Zangaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. VanDam, M. S. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35, 5211–5219 (1996). [CrossRef] [PubMed]
  5. A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993). [CrossRef]
  6. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1993). [CrossRef]
  7. E. M. Sevick-Muraca, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994). [CrossRef] [PubMed]
  8. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  9. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60, 281–286 (1994). [CrossRef]
  10. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996). [CrossRef] [PubMed]
  11. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997). [CrossRef] [PubMed]
  12. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997). [CrossRef] [PubMed]
  13. J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997). [CrossRef] [PubMed]
  14. E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765.
  15. P. S. Tofts, B. A. Berkowitz, M. Schnall, “Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model,” Magn. Res. Med. 33, 564–568 (1995). [CrossRef]
  16. B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986). [CrossRef] [PubMed]
  17. W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988). [CrossRef] [PubMed]
  18. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Fluorescence lifetime imaging of calcium using Quin-2,” Cell Calcium 13, 131–147 (1992). [CrossRef] [PubMed]
  19. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using infrared phosphors,” Biophys. J. 70, 1609–1617 (1996). [CrossRef] [PubMed]
  20. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). [CrossRef]
  21. P. W. Vaupel, Blood Flow, Oxygenation, Tissue pH Distribution, and Bioenergetic Status of Tumor (Ernst Schering Research Foundation, Berlin, 1994).
  22. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2335 (1989). [CrossRef] [PubMed]
  23. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  24. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  25. T. R. Carski, “Indocynanine green: history, chemistry, pharmacology, indication, adverse reactions, investigations and prognosis,” in An Investigator’s Brochure, 24June1994.
  26. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992).
  27. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solutions and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). [CrossRef]
  28. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997). [CrossRef] [PubMed]
  29. K. Licha, B. Riefke, W. Semmler, “Synthesis and characterization of cyanine dyes as contrast agents for near-infrared imaging,” in Optical and Imaging Techniques for Biomonitoring II, H. Foth, R. Marchesini, H. Podbielska, eds., Proc. SPIE2927, 192–198 (1996). [CrossRef]
  30. K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited