Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption

Not Accessible

Your library or personal account may give you access

Abstract

The fundamental limits for detection and characterization of fluorescent (phosphorescent) inhomogeneities embedded in tissuelike highly scattering turbid media are investigated. The absorption and fluorescence contrast introduced by exogenous fluorophores are also compared. Both analyses are based on practical signal-to-noise ratio considerations. For an object with fivefold fluorophore concentration and lifetime contrast with respect to the background tissue, we find the smallest detectable fluorescent object at 3-cm depth in tissuelike turbid media to be ∼0.25 cm in radius, whereas the smallest characterizable object size is ∼0.75 cm in radius, given a model with 1% amplitude and 0.5° phase noise. We also find that, for fluorescence extinction coefficients ∊ ≤ 0.5 × 105 cm-1 M-1, the fluorescence measurement mode is superior to the absorption mode for detecting an inhomogeneity. The optimal choice of modulation frequency for the frequency-domain fluorescence measurements is also discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation

Xavier Intes, Yu Chen, Xingde Li, and Britton Chance
Appl. Opt. 41(19) 3999-4007 (2002)

Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications

X. D. Li, M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh
Appl. Opt. 35(19) 3746-3758 (1996)

Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance

Edward L. Hull, Michael G. Nichols, and Thomas H. Foster
Appl. Opt. 37(13) 2755-2765 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved