OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 28 — Oct. 1, 1998
  • pp: 6845–6851

Investigation of the polarization optics of the living human cornea and lens with Purkinje images

Barbara K. Pierscionek and Robert A. Weale  »View Author Affiliations


Applied Optics, Vol. 37, Issue 28, pp. 6845-6851 (1998)
http://dx.doi.org/10.1364/AO.37.006845


View Full Text Article

Enhanced HTML    Acrobat PDF (98 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what to our knowledge is a new method for assessing the polarization optics of the cornea and lens, by examining the state of polarization of the first, second, and fourth Purkinje images. When linearly polarized light is incident on the cornea at 70° to the line of gaze along the horizontal meridian, and then traverses the cornea, or the cornea and the lens, the emergent light is elliptically polarized. The degree of ellipticity varies widely between subjects. The results indicate that both the cornea and the lens may be optically active and to our knowledge are the first to suggest that the cornea may exhibit circular birefringence.

© 1998 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(260.5430) Physical optics : Polarization
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics

History
Original Manuscript: April 16, 1998
Revised Manuscript: July 27, 1998
Published: October 1, 1998

Citation
Barbara K. Pierscionek and Robert A. Weale, "Investigation of the polarization optics of the living human cornea and lens with Purkinje images," Appl. Opt. 37, 6845-6851 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-28-6845


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136, 263–286 (1957). [PubMed]
  2. M. A. Jakus, “Further observations on the fine structure of the cornea,” Invest. Ophthalmol. Visual Sci. 1, 202–225 (1962).
  3. C. C. Teng, “Fine structure of the human cornea,” Am. J. Ophthal. 54, 969–1002 (1962).
  4. W. Schwarz, D. G. Keyserlingk, “Electron microscopy of normal and opaque human cornea,” in The Cornea. Macromolecular Organization of a Connective Tissue, M. E. Langham, ed. (Johns Hopkins U. Press, Baltimore, Md., 1967).
  5. C. C. D. Shute, “Haidinger’s brushes and predominant orientation of collagen in corneal stroma,” Nature 250, 163–164 (1974). [CrossRef] [PubMed]
  6. F. Veretout, M. Delaye, A. Tardieu, “Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of α-crystallin solutions,” J. Mol. Biol. 205, 713–728 (1989).
  7. D. Brewster, “On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light,” Philos. Trans. R. Soc. London Ser. B 106, 311–317 (1816). [CrossRef]
  8. D. C. Cogan, “Some ocular phenomena produced with polarized light,” Arch. Ophthalmol. 25, 391–400 (1941). [CrossRef]
  9. B. K. Pierscionek, “An explanation of isogyre formation in the eye lens,” Ophthalmic. Physiol. Opt. 13, 91–94 (1993). [CrossRef] [PubMed]
  10. B. K. Pierscionek, D. Y. C. Chan, “A mathematical description of isogyre formation in refracting structures,” Ophthalmic. Physiol. Opt. 13, 212–216 (1993). [CrossRef]
  11. W. N. Charman, “Explanation for the observation of isogyres in crystalline lenses viewed between crossed polarizers,” Ophthalmic. Physiol. Opt. 13, 209–211 (1993). [CrossRef] [PubMed]
  12. J. Lekner, “Isogyre formation by isotropic refracting bodies,” Ophthalmic. Physiol. Opt. 15, 69–72 (1995). [CrossRef] [PubMed]
  13. B. K. Pierscionek, R. A. Weale, “Is there a link between corneal structure and the ‘corneal cross?’” Eye 11, 361–364 (1997). [CrossRef]
  14. S. Mishima, “The use of polarized light in the biomicroscopy of the eye,” Adv. Ophthalmol. 10, 1–31 (1960).
  15. W. T. Cope, M. L. Wolbarsht, B. S. Yamanashi, “The corneal polarization cross,” J. Opt. Soc. Am. 68, 1139–1141 (1978). [CrossRef] [PubMed]
  16. F. A. Bettelheim, “On the optical anisotropy of lens fibre cells,” Exp. Eye Res. 21, 231–234 (1975). [CrossRef] [PubMed]
  17. R. A. Weale, “Sex, age and birefringence of the human crystalline lens,” Exp. Eye Res. 29, 449–461 (1979). [CrossRef] [PubMed]
  18. H. B. klein Brink, “Birefringence of the human crystalline lens in vivo,” J. Opt. Soc. Am. A 8, 1788–1793 (1991). [PubMed]
  19. A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34, 201–211 (1950). [CrossRef] [PubMed]
  20. D. Post, G. E. Gurland, “Birefringence of the cat cornea,” Exp. Eye Res. 5, 286–295 (1966). [CrossRef] [PubMed]
  21. G. W. Nyquist, “Stress-induced birefringence of the cornea,” Am. J. Ophthalmol. 59, 398–404 (1968).
  22. F. A. Bettelheim, D. Kaplan, “Small angle light scattering of bovine cornea as affected by birefringence,” Biochem. Biophys. Acta 313, 268–276 (1973). [CrossRef] [PubMed]
  23. T. J. Y. Wang, F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. 51A, 89–94 (1975). [CrossRef]
  24. F. A. Bettelheim, M. Kumbar, “An interpretation of small-angle light scattering patterns of human cornea,” Invest. Ophthal. Vis. Sci. 16, 233–236 (1977).
  25. L. J. Bour, N. K. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981). [CrossRef] [PubMed]
  26. G. J. Van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987). [CrossRef] [PubMed]
  27. J. E. Purkinje, Commentatio de Examine Physiologico Organi Visus (Dr. W. Junk Publishers, The Hague, 1823) (reprinted 1937), pp. 27–30.
  28. E. F. Fincham, “The changes in the form of the crystalline lens in accommodation,”Trans. Ophthal. Soc. UK 26, 239–269 (1925). [CrossRef]
  29. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959). [CrossRef] [PubMed]
  30. R. A. Weale, “The Oqual: a new device for measuring the optical quality of the anterior segment of the human eye,” Exp. Eye Res. 55, 597–510 (1992).
  31. W. A. Shurcliff, “Polarized light: production and use,” (Harvard U. Press, Cambridge, Mass., 1962), pp. 28, 102, 103.
  32. F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 337–357.
  33. F. A. Jenkins, H. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), pp. 516–577.
  34. J. Lekner, Theory of Reflection (Nijhoff, Dordrecht, The Netherlands, 1987), p. 7.
  35. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 707.
  36. J. Lekner, “Light in periodically stratified media,” J. Opt. Soc. Am. A. 11, 2892–2899 (1994). [CrossRef]
  37. D. M. Maurice, “The cornea and the sclera,” in The Eye, H. Davson, ed. (Academic, London, 1984), Vol. 1b, pp. 1–158. [CrossRef]
  38. D. M. Kirschenbaum, “Optical rotatory capacity of the lens of the vertebrate eye,” Nature 193, 392–393 (1962). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited