OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 29 — Oct. 10, 1998
  • pp: 6871–6877

Observation of High Gain in a Liquid-Crystal Panel with Photoconducting Polymeric Layers

Stanislaw Bartkiewicz, Andrzej Miniewicz, Franņois Kajzar, and Malgorzata Zagórska  »View Author Affiliations

Applied Optics, Vol. 37, Issue 29, pp. 6871-6877 (1998)

View Full Text Article

Acrobat PDF (112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel, to our knowledge, liquid-crystal panel suitable for real-time holographic purposes has been prepared. A nematic liquid-crystal layer sandwiched between photoconducting polymeric layers, when exposed to a sinusoidal light-intensity pattern, shows efficient formation of refractive-index gratings. The unique feature of the presented panel is its ability to switch energy from beam to beam in a manner similar to the charge-diffusion-controlled photorefractive effect. In a two-wave-mixing experiment multiple orders of diffraction are present, and a very high two-beam coupling-gain ratio (2.5) and a net exponential gain coefficient of Γ = 931 cm<sup>−1</sup> have been measured. This gain was achieved in samples biased by a dc external electric field and tilted with respect to the beam-incidence bisector at 45°. The time constants for grating formation and erasure in the studied system are functions of the applied voltage and can be made as short as a few milliseconds under favorable conditions. The mechanism of beam coupling is linked with an electric-field-driven reorientation of the nematic director as a result of a spatially modulated space-charge field created by light in a photoconducting poly(3-octyl)thiophene polymeric layer.

© 1998 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(160.3710) Materials : Liquid crystals
(160.5320) Materials : Photorefractive materials
(190.7070) Nonlinear optics : Two-wave mixing
(230.3720) Optical devices : Liquid-crystal devices

Stanislaw Bartkiewicz, Andrzej Miniewicz, Franņois Kajzar, and Malgorzata Zagórska, "Observation of High Gain in a Liquid-Crystal Panel with Photoconducting Polymeric Layers," Appl. Opt. 37, 6871-6877 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J.-M. Nunzi, F. Charra, and N. Pfeffer, “Optimization of an ultrafast OASLM using photoexcitations in organic thin films: the incoherent-to-coherent conversion efficiency of spectral concentration,” J. Phys. III (France) 3, 1401–1411 (1993).
  2. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Electric field dependence of opticle properties of semiconductor quantum wells: physics and applications,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, Boston, Mass., 1988), pp. 325–359.
  3. B. G. Sfez, E. V. K. Rao, Y. I. Nissim, and J. L. Oudar, “Operation of nonlinear GaAs/AlGaAs multiple quantum well microresonators fabricated using alloy-mixing techniques,” Appl. Phys. Lett. 60, 607–609 (1992).
  4. P. Tayebati, E. Canoglu, C. Hantzis, and R. N. Sacks, “High-speed all-semiconductor optically addressed spatial light modulator,” Appl. Phys. Lett. 71, 1610–1612 (1997).
  5. P. R. Barbier, L. Wang, and G. Moddel, “Thin-film photosensor design for liquid crystal spatial light modulators,” Opt. Eng. 33, 1322–1329 (1994).
  6. N. Hawiltschek, E. Gärtner, P. Gussek, and F. Reichel, “Properties and application of liquid crystal spatial light modulators in optical signal processing,” Exp. Tech. Phys. 40, 199–239 (1994).
  7. T. Kurokawa and S. Fukushima, “Spatial light modulators using ferroelectric liquid crystals,” Opt. Quantum Electron. 24, 1151–1163 (1992).
  8. S. Fukushima, T. Kurokawa, and M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
  9. J. Contzen, G. Heppke, H. S. Kitzerow, D. Kruerke, and H. Schmid, “Storage of laser-induced holographic gratings in discotic liquid crystals,” Appl. Phys. B Laser Opt. 63, 605–608 (1996).
  10. C. C. Mao, K. M. Johnson, and G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
  11. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and their Applications (Springer-Verlag, Berlin, 1988),Vols. 1 and 2.
  12. S. Boj, G. Pauliat, and G. Roosen, “Dynamic holographic memory showing readout, refreshing, and updating capabilities,” Opt. Lett. 17, 438–440 (1992).
  13. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–499 (1994).
  14. D. M. Burland, G. C. Bjorklund, W. E. Moerner, S. M. Silence, and J. J. Stankus, “Photorefractive polymer—A status report,” Pure Appl. Chem. 67, 33–38 (1995).
  15. M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
  16. K. S. Pennington and J. S. Harper, “Techniques for producing low-noise, improved efficiency holograms,” Appl. Opt. 9, 1643–1650 (1970).
  17. R. K. Kostuk and J. W. Goodman, “Refractive index modulation mechanism in bleached silver halide holograms,” Appl. Opt. 30, 369–371 (1991).
  18. P. Hariharan and C. M. Chidley, “Photographic phase holograms: spatial frequency effects with conventional and reversal bleaches,” Appl. Opt. 27, 3065–3067 (1988).
  19. W. S. Colbrum and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
  20. C. Carré and D. J. Lougnot, “Photopolymers for holographic recording: from standard to self-processing materials,” J. Phys. III 3, 1445–1460 (1993).
  21. S. Bartkiewicz and A. Miniewicz, “Methylene blue sensitized poly(methyl methacrylate) matrix: a novel holographic material,” Appl. Opt. 34, 5175–5178 (1995).
  22. D. Oesterhelt, C. Bräuchle, and N. Hampp, “Bacteriorhodopsin: a biological material for information processing,” Q. Rev. Biophys. 24, 425–478 (1991).
  23. Y. Okada-Shudo, I. Yamaguhi, H. Tomioka, and H. Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synthet. Metals 81, 147–149 (1996).
  24. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794–1797 (1995).
  25. E. V. Rudenko and A. V. Sukhov, “Optically induced space charge field in nematics and orientational nonlinearity,” (in Russian) JETP 105, 1621–1634 (1994).
  26. H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystals (DDLC),” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994).
  27. I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped liquid crystal,” IEEE J. Quantum Electron. 29, 1444–1447 (1993).
  28. I. Jánossy, A. D. Lloyd, and B. S. Wherrett, “Anomalous optical Fréedericksz transition in an absorbing liquid crystal,” Mol. Cryst. Liq. Cryst. 179, 1–12 (1990).
  29. I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E 49, 2957–2963 (1994).
  30. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film,” Opt. Lett. 20, 2137–2139 (1995).
  31. A. G. Chen and D. J. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett. 17, 441–443 (1992).
  32. A. Miniewicz, S. Bartkiewicz, A. Januszko, and J. Parka, “Dye-doped liquid crystal for real-time holography: nematic reorientation induced by photoconductivity,” in Photoactive Organic Materials Science and Application, Vol. 3/9 of NATO ASI Series, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, eds. (Kluwer, Dordrecht, the Netherlands, 1996), pp. 487–500.
  33. S. Bartkiewicz, A. Miniewicz, A. Januszko, and J. Parka, “Dye-doped liquid crystal composite for real-time holography,” Pure Appl. Opt. 5, 799–809 (1996).
  34. I. Jánossy and T. Kôsa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17, 1183–1185 (1992).
  35. A. Miniewicz, S. Bartkiewicz, W. Turalski, and A. Januszko, “Dye-doped liquid crystals for real-time holography,” in Electrical and Related Properties of Organic Solids, Vol. 3/24 of NATO ASI Series, R. W. Munn, A. Miniewicz, and B. Kuchta, eds. (Kluwer, Dordrecht, the Netherlands, 1997), pp. 323–337.
  36. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994).
  37. S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron. 6, 219–224 (1996).
  38. I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystals films,” IEEE J. Quantum Electron. 32, 525–534 (1996).
  39. I. C. Khoo, Liquid Crystals Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).
  40. C. Sentein, B. Mouanda, A. Rosilio, and C. Rosilio, “Influence of stereoregularity on the photoinitiated electrical conductivity of poly(3-alkylthiophenes),” Synthet. Metals 83, 27–37 (1996).
  41. N. T. Binh, M. Gailberger, and H. Bassler, “Photoconduction in poly(3-alkylthiophene). I. Charge carrier generation,” Synthet. Metals 47, 77–86 (1992).
  42. Data supplied with the E7 liquid crystal by Merck KGaA, D-64271 Darmstadt, Germany.
  43. A. Miniewicz, S. Bartkiewicz, and F. Kajzar, “On the dynamics of coherent amplification of light observed in liquid crystal panel with photoconducting polymeric layers,” Nonlin. Opt. 19, 157–175 (1988).
  44. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  45. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  46. H. Seiberle and M. Schadt, “LC-conductivity and cell parameters; their influence on twisted nematic and supertwisted nematic liquid crystal displays,” Mol. Cryst. Liq. Cryst. 239, 229–244 (1994).
  47. L. Wang and G. Moddel, “Resolution limits from charge transport in optically addressed spatial light modulators,” J. Appl. Phys. 78, 69–73 (1995).
  48. W. R. Roach, “Resolution of electro-optic light valves,” IEEE Trans. Electron Devices ED-21, 453–459 (1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited