OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 3 — Jan. 20, 1998
  • pp: 417–427

Multiple-Scattering Influence on Extinction-and Backscatter-Coefficient Measurements with Raman and High-Spectral-Resolution Lidars

Ulla Wandinger  »View Author Affiliations

Applied Optics, Vol. 37, Issue 3, pp. 417-427 (1998)

View Full Text Article

Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A formalism describing the influence of multiple scattering on cloud measurements with Raman and high-spectral-resolution lidars is presented. Model calculations including both particulate and molecular scattering processes are performed to describe the general effects of multiple scattering on both particulate and molecular lidar backscatter signals. It is found that, for typical measurement geometries of ground-based lidars, as many as five scattering orders contribute significantly to the backscattered light. The relative intensity of multiple-scattered light is generally larger in signals backscattered from molecules than in signals backscattered from particles. The multiple-scattering formalism is applied to measurements of water and ice clouds taken with a Raman lidar. Multiple-scattering errors of measured extinction coefficients are typically of the order of 50% at the bases of both water and ice clouds and decrease with increasing penetration depth to below 20%. In contrast, the multiple-scattering errors of backscatter coefficients are negligible in ice clouds and below 20% in water clouds.

© 1998 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3640) Atmospheric and oceanic optics : Lidar
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.5860) Scattering : Scattering, Raman
(290.5870) Scattering : Scattering, Rayleigh

Ulla Wandinger, "Multiple-Scattering Influence on Extinction-and Backscatter-Coefficient Measurements with Raman and High-Spectral-Resolution Lidars," Appl. Opt. 37, 417-427 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
  2. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
  3. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
  4. C. J. Grund and E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991).
  5. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
  6. A. Ansmann, J. Bösenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. H. Klapheck, H. Linné, L. Menenger, W. Michaelis, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, and C. Weitkamp, “Lidar network observation of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: The 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
  7. U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, “Determination of stratospheric-aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995).
  8. K.-N. Liou and R. M. Schotland, “Multiple backscattering and depolarization from water clouds for a pulsed lidar system,” J. Atmos. Sci. 28, 772–784 (1971).
  9. G. N. Plass and G. W. Kattawar, “Reflection of light pulses from clouds,” Appl. Opt. 10, 2304–2310 (1971).
  10. E. W. Eloranta, “Calculation of doubly scattered lidar returns,” Ph.D. dissertation (University of Wisconsin, Madison, Wisconsin, 1972).
  11. J. A. Weinman and S. T. Shipley, “Effects of multiple scattering on laser pulses transmitted through clouds,” J. Geophys. Res. 77, 7123–7128 (1972).
  12. J. A. Weinman, “Effects of multiple scattering on light pulses reflected by turbid atmospheres,” J. Atmos. Sci. 33, 1763–1771 (1976).
  13. K. E. Kunkel and J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976).
  14. S. T. Shipley, “The measurement of rainfall by lidar,” Ph.D. dissertation (University of Wisconsin, Madison, Wisconsin, 1978).
  15. C. M. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
  16. L. R. Bissonnette, “Multiscattering model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484 (1988).
  17. L. R. Bissonnette, “Multiple scattering of narrow light beams in aerosols,” Appl. Phys. B 60, 315–324 (1995).
  18. P. Bruscaglioni, A. Ismaeli, and G. Zaccanti, “Monte Carlo calculations of LIDAR returns: procedure and results,” Appl. Phys. B 60, 325–330 (1995).
  19. C. Flesia and P. Schwendimann, “Analytical multiple-scattering extension of the Mie theory: The LIDAR equation,” Appl. Phys. B 60, 331–334 (1995).
  20. A. V. Starkov, M. Noormohammadian, and U. G. Oppel, “A stochastic model and a variance-reduction Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995).
  21. D. M. Winker and L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS,” Appl. Phys. B 60, 341–344 (1995).
  22. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to LIDAR return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–354 (1995).
  23. L. R. Bissonnette, P. Bruscaglioni, A. Ismaeli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, and I. N. Polonsky, “LIDAR multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
  24. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969), p. 78.
  25. Y. Takano and K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254–3263 (1985).
  26. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
  27. S. R. Pal and A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976).
  28. C. M. R. Platt, “Lidar observations of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339–345 (1977).
  29. R. J. Allen and C. M. R. Platt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199 (1977).
  30. A. Cohen, M. Kleiman, and J. Cooney, “Lidar measurements of rotational Raman and double scattering,” Appl. Opt. 16, 1905–1910 (1978).
  31. S. Egert, A. Cohen, M. Kleiman, and N. Ben-Yosef, “Instantaneous integrated Raman scattering,” Appl. Opt. 22, 1592–1597 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited