OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 3 — Jan. 20, 1998
  • pp: 510–513

Solid-state cavity lasing from poly(p-phenylene vinylene)–silica nanocomposite bulk

Deepak N. Kumar, Jayant D. Bhawalkar, and Paras N. Prasad  »View Author Affiliations


Applied Optics, Vol. 37, Issue 3, pp. 510-513 (1998)
http://dx.doi.org/10.1364/AO.37.000510


View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have fabricated inorganic–organic nanocomposite bulk samples consisting of poly(p-phenylene vinylene) (PPV) and silica by in situ polymerization of a PPV salt monomer within a porous glass using a base-catalyzed polymerization reaction and subsequent heat treatment. The samples processed at temperatures above 200 °C showed a sharp reduction in fluorescence. Solid-state cavity lasing was achieved from the samples processed at 150 °C with optical efficiency as high as 11.4%. We report characteristic narrowing of the linewidth and the temporal profile.

© 1998 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(160.2750) Materials : Glass and other amorphous materials
(160.5470) Materials : Polymers

History
Original Manuscript: July 14, 1997
Revised Manuscript: September 29, 1997
Published: January 20, 1998

Citation
Deepak N. Kumar, Jayant D. Bhawalkar, and Paras N. Prasad, "Solid-state cavity lasing from poly(p-phenylene vinylene)–silica nanocomposite bulk," Appl. Opt. 37, 510-513 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-3-510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Pang, M. Samoc, P. N. Prasad, “Third order nonlinearity and two-photon-induced molecular dynamics: femtosecond time-resolved transient absorption, Kerr gate, and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film,” J. Chem. Phys. 94, 5282–5290 (1991). [CrossRef]
  2. B. P. Singh, P. N. Prasad, F. E. Karasz, “Third-order non-linear optical properties of oriented films of poly (p-phenylene vinylene) investigated by femtosecond degenerate four wave mixing,” Polymer 29, 1940–1942 (1988). [CrossRef]
  3. C. H. Lee, G. Yu, A. J. Heeger, “Persistent photoconductivity in poly (p-phenylene vinylene): spectral response and slow relaxation,” Phys. Rev. B 47,15,543–15,553 (1993). [CrossRef]
  4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature (London) 347, 539–541 (1990). [CrossRef]
  5. D. Braun, A. J. Heeger, “Visible light emission from semiconducting polymer diodes,” Appl. Phys. Lett. 58, 1982–1984 (1991). [CrossRef]
  6. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, “Efficient light-emitting diodes based on polymers with high electron affinities,” Nature (London) 365, 628–630 (1993). [CrossRef]
  7. D. Moses, “High quantum efficiency luminescence from a conducting polymer in solution: a novel polymer laser dye,” Appl. Phys. Lett. 60, 3215–3216 (1992). [CrossRef]
  8. H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995). [CrossRef]
  9. F. Hide, B. J. Schwartz, M. A. Díaz-García, A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996). [CrossRef]
  10. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273, 1833–1835 (1996). [CrossRef]
  11. C. J. Wung, Y. Pang, P. N. Prasad, F. E. Karasz, “Poly (p-phenylene vinylene)-silica composite: a novel sol-gel processed non-linear optical material for optical waveguides,” Polymer 32, 605–608 (1991). [CrossRef]
  12. B. L. Davies, M. Samoc, M. Woodruff, “Comparison of linear and nonlinear optical properties of poly (p-phenylene vinylene)/sol-gel composites derived from tetramethoxysilane and methyltrimethoxysilane,” Chem. Mater. 8, 2586–2594 (1996).
  13. E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neumann, R. Reisfeld, “New conjugated polymer/sol-gel glass composites: luminescence and optical waveguides,” Adv. Mater. 8, 833–839 (1996). [CrossRef]
  14. R. W. Lenz, C. C. Han, J. Stenger-Smith, F. E. Karasz, “Preparation of poly (phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers,” J. Polym. Sci. Part A 26, 3241–3249 (1988). [CrossRef]
  15. D. D. C. Bradley, “Precursor-route poly (p-phenylene vinylene): polymer characterization and control of electronic properties,” J. Phys. D 20, 1389–1408 (1987). [CrossRef]
  16. M. Herold, J. Gmeiner, W. Reib, M. Schwoerer, “Tailoring of the electrical and optical properties of poly (p-phenylene vinylene),” Synth. Met. 76, 109–112 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited