OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 3 — Jan. 20, 1998
  • pp: 540–545

Phase compensation of azimuthally polarized J 1 Bessel–Gaussian laser beams

Anthony A. Tovar  »View Author Affiliations

Applied Optics, Vol. 37, Issue 3, pp. 540-545 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As other semiconductor lasers, concentric-circle-grating, surface-emitting lasers are compact, light, and efficient. However, unlike other semiconductor lasers, they emit high-power, low-divergence azimuthally polarized J1 Bessel–Gaussian beams. Because of their azimuthal polarization, they have a null at the center of the beam that makes them undesirable for certain applications. Binary phase compensation, a lossless technique previously used to improve the far-field profile of linearly polarized Hermite–Gaussian beams, is adapted to these azimuthally polarized beams to rid them of their axial nulls and improve their beam profile.

© 1998 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(260.0260) Physical optics : Physical optics
(350.5030) Other areas of optics : Phase

Original Manuscript: June 4, 1997
Revised Manuscript: September 29, 1997
Published: January 20, 1998

Anthony A. Tovar, "Phase compensation of azimuthally polarized J1 Bessel–Gaussian laser beams," Appl. Opt. 37, 540-545 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  2. N. W. Carlson, G. A. Evans, D. P. Bour, S. K. Liew, “Demonstration of a grating-surface-emitting diode laser with low-threshold current density,” Appl. Phys. Lett. 56, 16–18 (1990). [CrossRef]
  3. D. F. Welch, R. Parke, A. Hardy, W. Streifer, D. R. Scifres, “Low-threshold grating-coupled surface-emitting lasers,” Appl. Phys. Lett. 55, 813–815 (1989). [CrossRef]
  4. N. G. Alexopoulos, S. R. Kerner, “Coupled power theorem and orthogonality relations for optical disk waveguides,” J. Opt. Soc. Am. 67, 1634–1638 (1977). [CrossRef]
  5. S. R. Kerner, N. G. Alexopoulos, R. F. Cordero-Iannarella, “On the theory of corrugated optical disk waveguides,” IEEE Trans. Microwave Theory Tech. MTT-28, 18–24 (1980). [CrossRef]
  6. T. Erdogan, D. G. Hall, “Circularly symmetric distributed feedback semiconductor laser: an analysis,” J. Appl. Phys. 68, 1435–1444 (1990). [CrossRef]
  7. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992). [CrossRef]
  8. R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997). [CrossRef]
  9. L. W. Casperson, “Phase compensation of laser beam modes,” Opt. Quantum Electron. 8, 537–544 (1976). [CrossRef]
  10. L. W. Casperson, N. K. Kinchloe, O. M. Stafsudd, “Phase plates for laser beam compensation,” Opt. Commun. 21, 1–4 (1977). [CrossRef]
  11. L. W. Casperson, “How phase plates transform and control laser beams,” Laser Focus World 30 (5), 223–228 (1994).
  12. See A. A. Tovar, L. W. Casperson, “Generalized beam matrices. IV. Optical system design,” J. Opt. Soc. Am. A 14, 882–893 (1997) and references therein.
  13. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1970), pp. 355–494.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited