OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 3 — Jan. 20, 1998
  • pp: 561–564

Thermo-optic dispersion formula of AgGaSe2 and its practical applications

Eiko Tanaka and Kiyoshi Kato  »View Author Affiliations


Applied Optics, Vol. 37, Issue 3, pp. 561-564 (1998)
http://dx.doi.org/10.1364/AO.37.000561


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The thermo-optic constants of AgGaSe2 have been measured at 2.052, 3.3913, 5.2955, and 10.5910 μm. These results combined with values reported in the literature were used to construct the thermo-optic dispersion formula that correctly reproduces the temperature-dependent phase-matching conditions for second-harmonic generation and sum-frequency generation of a CO2 laser as well as the thermally induced lensing effects for the 2.05-μm pumped parametric oscillators.

© 1998 Optical Society of America

OCIS Codes
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(160.6840) Materials : Thermo-optical materials
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

History
Original Manuscript: April 3, 1997
Published: January 20, 1998

Citation
Eiko Tanaka and Kiyoshi Kato, "Thermo-optic dispersion formula of AgGaSe2 and its practical applications," Appl. Opt. 37, 561-564 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-3-561


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A Harasaki, J Sakuma, T Itoh, T Satoh, M Sugii, T Sakuma, K Kato, “High-average-power mid-IR laser obtained by frequency-doubling a TEA-CO2 MOPA system by using AgGaSe2 crystals,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest (Optical Society of America, Washington, D.C., 1995), paper CTuO3. We recently generated an average output power of 3.9 W for SHG and 2.2 W for third-harmonic generation at a fundamental pump power of 22 W (360 mJ/pulse at 60 Hz).
  2. P. A. Budni, M. G. Knights, E. P. Chicklis, K. L. Schepler, “Kilohertz AgGaSe2 optical parametric oscillator pumped at 2 μm,” Opt. Lett. 18, 1068–1079 (1993). [CrossRef] [PubMed]
  3. C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994). [CrossRef] [PubMed]
  4. N. P. Barnes, R. C. Eckardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979). [CrossRef]
  5. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Iannini, “Parametric oscillation in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989). [CrossRef] [PubMed]
  6. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second harmonic generation in AgGaSe2 crystals,” J. Appl. Phys. 74, 5282–5284 (1993). [CrossRef]
  7. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2 temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994). [CrossRef]
  8. K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974–1976 (1992). [CrossRef]
  9. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994). [CrossRef]
  10. K. Kato, at H. Komine, J. M. Fukumoto, W. H. Long, E. A. Stappert, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE Select. Topics Quantum Electron. 1, 44–49 (1995). [CrossRef]
  11. A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage in AgGaSe2,” Jpn. J. Appl. Phys. 36, 700–703 (1997). [CrossRef]
  12. N. P. Barnes, J. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12, 124–131 (1995). [CrossRef]
  13. J. D. Beasley, “Thermal conductivities of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994). [CrossRef] [PubMed]
  14. A. S. Borshchevskii, N. A. Goryunova, F. P. Kesamanly, D. N. Nasledov, “Semiconducting AIIBIVC2V compounds,” Phys. Status Solidi 21, 9–55 (1967). [CrossRef]
  15. S. C. Abrahams, F. S. L. Hsu, “Debye temperature and cohesive properties,” J. Chem. Phys. 63, 1162–1165 (1975). [CrossRef]
  16. G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993). [PubMed]
  17. D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, “Elastic constants and thermal fracture of AgGaSe2 and d-LAP,” IEEE J. Quantum Electron. 27, 142–145 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited