OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 30 — Oct. 20, 1998
  • pp: 7008–7018

Equivalence of pyrheliometric and monochromatic aerosol optical depths at a single key wavelength

Benoı̂t Molineaux, Pierre Ineichen, and Norm O’Neill  »View Author Affiliations


Applied Optics, Vol. 37, Issue 30, pp. 7008-7018 (1998)
http://dx.doi.org/10.1364/AO.37.007008


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The atmospheric aerosol optical depth (AOD) weighted over the solar spectrum is equal to the monochromatic AOD at a certain wavelength. This key wavelength is ∼0.7 μm, which is only slightly influenced by air mass and aerosol content. On the basis of this result, simple relations are proposed to predict monochromatic AOD from pyrheliometric data and vice versa. The accuracy achieved is close to ±0.01 units of AOD at ∼0.7 μm, estimated from simultaneous sunphotometer data. The precision required for the estimation of the precipitable water-vapor content is approximately ±0.5 cm.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols

History
Original Manuscript: April 24, 1998
Revised Manuscript: June 23, 1998
Published: October 20, 1998

Citation
Benoı̂t Molineaux, Pierre Ineichen, and Norm O’Neill, "Equivalence of pyrheliometric and monochromatic aerosol optical depths at a single key wavelength," Appl. Opt. 37, 7008-7018 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-30-7008


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. G. Dutton, P. Reddy, S. Ryan, J. J. DeLuisi, “Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992,” J. Geophys. Res. 99, 8295–8306 (1994). [CrossRef]
  2. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cress, J. A. Coackley, J. E. Hansen, D. J. Hofman, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  3. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sunphotometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994). [CrossRef] [PubMed]
  4. F. Linke, “Transmissions-koeffizient und trübungsfaktor,” Beitr. Phys. Fr. Atmos. 10, 91–103 (1922).
  5. M. M. Unsworth, J. L. Monteith, “Aerosol and solar radiation in Britain,” Q. J. R. Meteorol. Soc. 98, 778–797 (1972). [CrossRef]
  6. F. E. Volz, “Atmospheric turbidity after the Agung eruption of 1963 and size distribution of the volcanic aerosol,” J. Geophys. Res. 75, 5185–5193 (1970). [CrossRef]
  7. R. B. Stothers, “Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period, 1881–1960,” J. Geophys. Res. 101, 3901–3920 (1996). [CrossRef]
  8. J. C. Grenier, A. DeLaCasiniere, T. Cabot, “A spectral model of Linke’s turbidity factor and its experimental implications,” Sol. Energy 52, 303–314 (1994). [CrossRef]
  9. C. Gueymard, “Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach,” J. Appl. Meteorol. 37, 414–435 (1998). [CrossRef]
  10. J. P. Blanchet, “Application of the Chandrasekhar mean to aerosol optical parameters,” Atmos. Ocean 20, 189–206 (1982). [CrossRef]
  11. B. W. Forgan, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol: comment,” Appl. Opt. 27, 2546–2548 (1988). [CrossRef] [PubMed]
  12. B. Molineaux, P. Ineichen, “On the broad band transmittance of direct solar radiation in a cloudless sky and its application to the parameterization of atmospheric turbidity,” Sol. Energy 56, 553–563 (1996). [CrossRef]
  13. J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. J. Herman, A. Ben-David, “Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broadband and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. GE-25, 647–653 (1987). [CrossRef]
  14. C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).
  15. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab., Hanscom Air Force Base, Mass., 1979).
  16. A. Deepak, H. E. Gerber, eds., Experts Meeting on Aerosols and their Climatic Effects (World Meteorological Organization, Geneva, 1983), call number WCP-55.
  17. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  18. A. K. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. 11, 156–166 (1929). [CrossRef]
  19. C. Tomasi, E. Caroli, V. Vizale, “Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent,” J. Climate Applied Meteor. 22, 1707–1716 (1983). [CrossRef]
  20. N. O’Neill, A. Royer, “Extraction of bimodal aerosol-size distribution radii from spectral and angular slope (Ångström) coefficients,” Appl. Opt. 32, 1642–1645 (1993). [CrossRef]
  21. M. R. Spiegel, Theory and Problems of Advanced Calculus (McGraw-Hill, New York, 1973).
  22. P. R. Russel, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamil, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18,745–18,763 (1996).
  23. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for LOWTRAN 7,” GL-TR-89-0122 (1989), updated and commercialized by Ontar Corporation, 9 Village Way, North Andover, Mass. 01845 (1996).
  24. C. Gueymard, “smarts2, a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment,” Rep. FSEC-PF-270-95 (Florida Solar Energy Center, Cape Canaveral, Florida 32920, 1995).
  25. B. Molineaux, “Modélisation de la transmission atmosphérique du rayonnement solaire” (Ph.D. dissertation, University of Geneva, Geneva, Switzerland, 1997).
  26. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  27. L. Harrison, J. Michalsky, J. Berndt, “Automated multifilter shadow-band radiometer: an instrument for optical depth and radiation measurements,” Appl. Opt. 33, 5118–5125 (1994). [CrossRef] [PubMed]
  28. F. Bason, SolData instruments, Linabakken 13, DK-8600 Silkeborg, Denmark, personal communications (1995).
  29. B. W. Forgan, “General method for calibrating sunphotometers,” Appl. Opt. 33, 4841–4850 (1994). [CrossRef] [PubMed]
  30. J. A. Reagan, K. J. Thome, B. M. Herman, “A simple instrument for measuring columnar water vapor via near-IR differential solar transmission measurements,” IEEE Trans. Geosci. Remote Sens. 30, 825–831 (1992). [CrossRef]
  31. International Commission on Illumination, Guide to Recommended Practice of Daylight Measurement (CIE Central Bureau, Vienna, 1994).
  32. J. Wright, R. Perez, J. Michalsky, “Luminous efficacy of direct irradiance: variations with insolation and moisture conditions,” Sol. Energy 42, 387–394 (1989). [CrossRef]
  33. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited