OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 30 — Oct. 20, 1998
  • pp: 7055–7061

Compression of optical pulses spectrally broadened by self-phase modulation with a fiber Bragg grating in transmission

Benjamin J. Eggleton, Gadi Lenz, Richart. E. Slusher, and Natalia M. Litchinitser  »View Author Affiliations

Applied Optics, Vol. 37, Issue 30, pp. 7055-7061 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate experimentally the compression of optical pulses, spectrally broadened by self-phase modulation occurring in the rod of a mode-locked Q-switched YLF laser, with an unchirped, apodized fiber Bragg grating in transmission. The compression is due to the strong dispersion of the Bragg grating at frequencies close to the edge of the photonic bandgap, in the passband, where the transmission is high. With the systems investigated, an 80-ps pulse, which is spectrally broadened, owing to self-phase modulation, with a peak nonlinear phase shift of ΔΦ = 7, is compressed to approximately 15 ps, in good agreement with theory and numerical simulations. The results demonstrate that photonic bandgap structures are promising devices for efficient pulse compression.

© 1998 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.4050) Lasers and laser optics : Mode-locked lasers

Original Manuscript: May 19, 1998
Revised Manuscript: July 27, 1998
Published: October 20, 1998

Benjamin J. Eggleton, Gadi Lenz, Richart. E. Slusher, and Natalia M. Litchinitser, "Compression of optical pulses spectrally broadened by self-phase modulation with a fiber Bragg grating in transmission," Appl. Opt. 37, 7055-7061 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendikson, J. P. Dowling, R. P. Leavitt, “Ultrashort pulse propagation at the bandgap edge: large tunable delay with minimal pulse distortion and loss,” Phys. Rev. E 54, 1078R–1082R (1996). [CrossRef]
  2. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef] [PubMed]
  3. P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, P. Hill, “Dispersion compensation over 270 km at 10Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995). [CrossRef]
  4. P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991). [CrossRef]
  5. N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” IEEE J. Lightwave Technol. 15, 1303–1313 (1997). [CrossRef]
  6. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996). [CrossRef]
  7. W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of optical pulses by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–143 (1984). [CrossRef]
  8. J. A. R. Williams, I. Bennion, L. Zhang, “Compression of optical pulse using self-phase modulation and linearly chirped Bragg-gratings in fibers,” IEEE Photonics Technol. Lett. 7, 491–493 (1995). [CrossRef]
  9. D. S. Peter, W. Hodel, H. P. Weber, “Compression of pulses spectrally broadened by self-phase modulation using a fiber grating: a theoretical study of the compression efficiency,” Opt. Commun. 112, 59–66 (1994). [CrossRef]
  10. G. Lenz, B. J. Eggleton, N. M. Litchinitser, “Pulse compression using fiber gratings as highly dispersive nonlinear elements,” J. Opt. Soc. Am. B 15, 715–721 (1998). [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  12. J. E. Sipe, B. J. Eggleton, T. A. Strasser, “Dispersion of nonuniform Bragg gratings: implications for WDM communications systems,” Opt. Commun. 152, 269–274 (1998). [CrossRef]
  13. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996);B. J. Eggleton, C. M. de Sterke, R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef] [PubMed]
  14. D. J. Kuizenga, D. W. Phillion, “Simultaneous Q-switching and modelocking in the CW ND:YAG laser,” Opt. Commun. 9, 221–226 (1973). [CrossRef]
  15. D. Von der Linde, “Experimental study of single picosecond light pulses,” IEEE J. Quantum. Electron. QE-8, 328–338 (1972). [CrossRef]
  16. T. A. Strasser, P. J. Chandonnet, J. DeMarko, C. E. Soccolich, J. R. Pedrazzani, D. J. Di Giovanni, M. J. Andrejco, D. S. Shenk, “UV-induced fiber grating OADM devices for efficient bandwidth utilization,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), Postdeadline paper PD8.
  17. K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry–Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photonics Technol. Lett. 7, 158–160 (1995). [CrossRef]
  18. A. Galvanauskas, A. Heany, T. Erdogan, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThJ2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited