OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 30 — Oct. 20, 1998
  • pp: 7107–7111

Optimized light emission from layered porous silicon structures

Emma K. Squire, Philip St. J. Russell, and Paul A. Snow  »View Author Affiliations


Applied Optics, Vol. 37, Issue 30, pp. 7107-7111 (1998)
http://dx.doi.org/10.1364/AO.37.007107


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss in detail the physics of light emission from porous silicon microcavities formed by periodically modulating the porosity to produce multilayered structures. Changing the porosity alters not only the refractive index and absorption but also the luminescence, resulting in a complex interplay of effects that has not yet been addressed in the literature as far as we know. A transfer matrix model is developed that accounts for the dispersion of the refractive index, absorption, and photoluminescence. A multilayer porous silicon mirror is found to emit light almost as well as a conventional distributed feedback microcavity system with a mid-stop-band resonant state.

© 1998 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.4760) Materials : Optical properties
(230.4170) Optical devices : Multilayers
(300.2140) Spectroscopy : Emission

History
Original Manuscript: April 27, 1998
Revised Manuscript: July 7, 1998
Published: October 20, 1998

Citation
Emma K. Squire, Philip St. J. Russell, and Paul A. Snow, "Optimized light emission from layered porous silicon structures," Appl. Opt. 37, 7107-7111 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-30-7107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990). [CrossRef]
  2. N. Koshida, H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992). [CrossRef]
  3. A. Loni, A. J. Simons, T. I. Cox, P. D. J. Calcott, L. T. Canham, “Electroluminescent porous silicon device with an external quantum efficiency of greater than 0.1% under CW operation,” Electron. Lett. 31, 1288–1289 (1995). [CrossRef]
  4. L. Pavesi, R. Guardini, C. Mazzoleni, “Porous silicon resonant cavity light emitting diodes,” Solid State Commun. 97, 1051–1053 (1996). [CrossRef]
  5. M. G. Berger, M. Thönissen, R. Arens-Fischer, H. Münder, H. Lüth, M. Arntzen, W. Theiss, “Investigation and design of optical properties of porosity superlattices,” Thin Solid Films 255, 313–316 (1995). [CrossRef]
  6. M. Araki, H. Koyama, N. Koshida, “Precisely tuned emission from porous silicon vertical optical cavity in the visible region,” J. Appl. Phys. 80, 4841–4844 (1996). [CrossRef]
  7. G. Lérondel, P. Ferrand, R. Romestain, “Elaboration and light emission properties of low doped P-type porous silicon microcavities,” Mater. Res. Soc. Symp. Proc. 452, 711–716 (1997). [CrossRef]
  8. P. St. J. Russell, T. A. Birks, F. Dominic Lloyd-Lucas, Confined Electrons and Photons (Plenum, New York, 1995), pp. 585–633. [CrossRef]
  9. C. D. Salzberg, “Infrared refractive indexes of silicon germanium and modified selenium glass,” J. Opt. Soc. Am. 47, 244–246 (1957). [CrossRef]
  10. A = 3.41696, B = 0.138497 μm2, C = 0.013924 μm4, D = -2.09 × 10-5 μm-2, E = 1.48 × 10-7 μm-4, F = 0.028 μm2.
  11. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
  12. L. Pavesi, C. Mazzoleni, A. Tredicucci, V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280–3282 (1995). [CrossRef]
  13. E. D. Palik, ed., Handbook of Optical Constants in Solids (Academic, New York, 1991), pp. 564–566.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited