OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 30 — Oct. 20, 1998
  • pp: 7120–7127

Comparison of continuous-wave CO2 lidar calibration by use of Earth-surface targets in laboratory and airborne measurements

Maurice A. Jarzembski and Vandana Srivastava  »View Author Affiliations


Applied Optics, Vol. 37, Issue 30, pp. 7120-7127 (1998)
http://dx.doi.org/10.1364/AO.37.007120


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1-μm CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth’s surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.

© 1998 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

History
Original Manuscript: October 1, 1997
Revised Manuscript: June 18, 1998
Published: October 20, 1998

Citation
Maurice A. Jarzembski and Vandana Srivastava, "Comparison of continuous-wave CO2 lidar calibration by use of Earth-surface targets in laboratory and airborne measurements," Appl. Opt. 37, 7120-7127 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-30-7120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Rothermel, D. R. Cutten, R. M. Hardesty, R. T. Menzies, J. N. Howell, S. C. Johnson, D. M. Tratt, L. D. Olivier, R. M. Banta, “The multi-center airborne coherent atmospheric wind sensor, MACAWS,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998). [CrossRef]
  2. M. A. Jarzembski, V. Srivastava, E. W. McCaul, G. J. Jedlovec, R. J. Atkinson, R. F. Pueschel, D. R. Cutten, “Comparison of lidar backscatter with particle distribution and goes-7 data in Hurricane Juliette,” Geophys. Res. Lett. 24, 1063–1066 (1997). [CrossRef]
  3. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997). [CrossRef] [PubMed]
  4. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994). [CrossRef] [PubMed]
  5. Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection,” Int. J. Remote Sens. 14, 21–52 (1993). [CrossRef]
  6. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  7. M. J. Kavaya, G. D. Spiers, E. S. Lobl, J. Rothermel, V. W. Keller, “Direct global measurements of tropospheric winds employing a simplified coherent laser radar using fully scalable technology and technique,” Proc. Soc. Photo-Opt. Instrum. Eng. 2214, 237–249 (1994).
  8. W. L. Wolfe, G. J. Zissis, The Infrared Handbook (1978), Chap. 3.
  9. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  10. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971). [CrossRef] [PubMed]
  11. R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric aerosol backscatter measurements using a tunable coherent CO2 lidar,” Appl. Opt. 23, 2510–2517 (1984). [CrossRef] [PubMed]
  12. M. A. Jarzembski, V. Srivastava, D. M. Chambers, “Lidar calibration technique using laboratory-generated aerosols,” Appl. Opt. 35, 2096–2108 (1996). [CrossRef] [PubMed]
  13. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1996). [CrossRef] [PubMed]
  14. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983). [CrossRef]
  15. M. J. Kavaya, “The JPL lidar target calibration facility,” in Digest of Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), p. II.1.
  16. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. H. Smith, “hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  17. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, W. O. Gallery, “Atmospheric transmittance/radiance-computer code lowtran 7,” Report AFGL-TR-88-0177 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited