OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 30 — Oct. 20, 1998
  • pp: 7137–7142

Photothermal phase-shift spectroscopy in a flowing medium: experiment

Mahmood Soltanolkotabi and Rajendra Gupta  »View Author Affiliations

Applied Optics, Vol. 37, Issue 30, pp. 7137-7142 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photothermal phase-shift signals in a flowing medium have been observed and found to be consistent with the theoretical predictions.

© 1998 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6430) Spectroscopy : Spectroscopy, photothermal
(350.5340) Other areas of optics : Photothermal effects

Original Manuscript: March 19, 1998
Revised Manuscript: July 8, 1998
Published: October 20, 1998

Mahmood Soltanolkotabi and Rajendra Gupta, "Photothermal phase-shift spectroscopy in a flowing medium: experiment," Appl. Opt. 37, 7137-7142 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, Progress in Natural Science, Supplement to Vol. 6 (Taylor & Francis, Washington, D.C., 1996). See also, Progress in Photothermal and Photoacoustic Science and Technology, A. Mandelis, ed. (Elsevier, New York, 1992), Vol. 1 and other volumes in this series.
  2. See, for example, R. Gupta, “The theory of photothermal effect in fluids,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1988).
  3. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981). [CrossRef] [PubMed]
  4. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  5. For a review, see H. L. Fang, R. L. Swofford, “The thermal lens in absorption spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).
  6. R. Vyas, R. Gupta, “Photothermal lensing spectroscopy in a flowing medium: theory,” Appl. Opt. 27, 4701–4711 (1988). [CrossRef] [PubMed]
  7. J. Stone, “Thermooptical technique for the measurement of absorption loss spectrum in liquids,” Appl. Opt. 12, 1828–1830 (1973). [CrossRef] [PubMed]
  8. C. C. Davis, “Trace detection of gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515–518 (1980). [CrossRef]
  9. C. C. Davis, S. J. Petuchowski, “Phase fluctuation optical heterodyne spectroscopy of gases,” Appl. Opt. 20, 2539–2554 (1981). [CrossRef] [PubMed]
  10. C. C. Davis, “Radial laser-induced soundwave propagation and vibrational relaxation in carbon dioxide,” IEEE J. Quantum Electron. QE-18, 999–1003 (1982). [CrossRef]
  11. A. J. Campillo, H.-B. Lin, C. J. Dodge, C. C. Davis, “Stark-effect-modulated phase-fluctuation optical heterodyne interferometer for trace-gas analysis,” Opt. Lett. 5, 424–426 (1980);S. J. Petuchowski, C. C. Davis, “Selective trace detection of asymmetric rotor molecules by stark-modulated phase fluctuation optical heterodyne spectroscopy,” Opt. Commun. 38, 26–30 (1981). [CrossRef] [PubMed]
  12. H.-B. Lin, A. J. Campillo, “Photothermal aerosol absorption spectroscopy,” Appl. Opt. 24, 422–433 (1985);D. U. Fluckiger, H.-B. Lin, W. H. Marlow, “Composition measurement of aerosols of submicrometer particles by phase fluctuation absorption spectroscopy,” Appl. Opt. 24, 1668–1681 (1985). [CrossRef] [PubMed]
  13. W.-K. Lee, A. Gungor, P.-T. Ho, C. C. Davis, “Direct measurement of dilute dye solution quantum yield by photothermal laser heterodyne interferometry,” Appl. Phys. Lett. 47, 916–918 (1985). [CrossRef]
  14. M. L. Swicord, C. C. Davis, “An optical method for investigating the microwave absorption characteristics of DNA and other biomolecules in solutions,” Bioelectromagnetics 4, 21–42 (1983). [CrossRef]
  15. A. J. Campillo, S. J. Petuchowski, C. C. Davis, H.-B. Lin, “Fabry-Perot photothermal trace detection,” Appl. Phys. Lett. 41, 327–329 (1982). [CrossRef]
  16. S. V. Ignat’ev, Yu. I. Korolev, M. A. Novikov, A. E. Rozental, “Photothermal method of measuring weak absorption in a polarizing interferometer,” J. Appl. Spectrosc. 50, 503–508 (1989). [CrossRef]
  17. M. Muller, S. Basum, S. Glaser, K. F. Renk, “Study of submillimeter absorptivity of high Tc superconductors by photothermal interference spectroscopy,” Appl. Phys. Lett. 59, 3476–3478 (1991). [CrossRef]
  18. W. Faubel, B. S. Seidel, H. J. Ache, “Trace analysis of water pollutants by photothermal phase shift spectroscopy with an integrated microinterferometer,” Opt. Eng. 35, 3555–3561 (1996). [CrossRef]
  19. B. Monson, R. Vyas, R. Gupta, “Pulsed and cw photothermal phase-shift spectroscopy in a fluid medium,” Appl. Opt. 28, 2554–2560 (1989). [CrossRef] [PubMed]
  20. See, for example, J. A. Sell, “Fluid velocimetry using the photothermal deflection effect,” in Photothermal Investigations of Solids in Fluids,” J. A. Sell, ed. (Academic, New York, 1989).
  21. See, for example, R. Gupta, “Combustion diagnostics by photothermal deflection spectroscopy,” in Photothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited