OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 31 — Nov. 1, 1998
  • pp: 7200–7208

Convex Grating Types for Concentric Imaging Spectrometers

Pantazis Mouroulis, Daniel W. Wilson, Paul D. Maker, and Richard E. Muller  »View Author Affiliations


Applied Optics, Vol. 37, Issue 31, pp. 7200-7208 (1998)
http://dx.doi.org/10.1364/AO.37.007200


View Full Text Article

Acrobat PDF (611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The properties of convex gratings fabricated by electron-beam lithography are investigated. Three grating types are shown. The first is a single-panel, true blazed grating in which the blaze angle stays constant relative to the local surface normal. This grating provides high peak efficiencies of approximately 88% in the first order and 85% in the second order. The second grating has two concentric panels, with each panel blazed at a different angle. This type permits flexibility in matching the grating response to a desired form. The third type has a groove shape that departs from the sawtooth blazed profile to increase the second-order bandwidth. All these types are difficult or impossible to produce with conventional techniques. The gratings compare favorably with conventional (holographic and ruled) types in terms of efficiency and scatter. Simple scalar models are shown to predict the wavelength response accurately. These gratings allow the optical designer to realize fully the considerable advantages of concentric spectrometer forms.

© 1998 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(220.4000) Optical design and fabrication : Microstructure fabrication

Citation
Pantazis Mouroulis, Daniel W. Wilson, Paul D. Maker, and Richard E. Muller, "Convex Grating Types for Concentric Imaging Spectrometers," Appl. Opt. 37, 7200-7208 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-31-7200


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Offner, “New concepts in projection mask aligners,” Opt. Eng. 14, 130–132 (1975).
  2. L. Mertz, “Concentric spectrographs,” Appl. Opt. 16, 3122–3124 (1977).
  3. J. Dyson, “Unit magnification optical system without Seidel aberrations,” J. Opt. Soc. Am. 49, 713–716 (1959).
  4. C. G. Wynne, “Monocentric telescopes for microlithography,” Opt. Eng. 26, 300–303 (1987).
  5. D. R. Lobb, “Theory of concentric designs for grating spectrometers,” Appl. Opt. 33, 2648–2658 (1994).
  6. F. Reininger and 46 coauthors, “VIRTIS: visible infrared thermal imaging spectrometer for the Rosetta mission,” in Imaging Spectrometry II, M. R. Descour and J. M. Mooney, eds., Proc. SPIE 2819, 66–77 (1996).
  7. D. R. Lobb, “Imaging spectrometers using concentric optics,” in Imaging Spectrometry III, M. R. Descour and S. S. Shen, eds., Proc. SPIE 3118, 339–347 (1997).
  8. H. H. Zwick, “Evaluation results from a pushbroom imager for remote sensing,” Can. J. Remote Sens. 5, 101–117 (1979).
  9. T. J. Brown, F. J. Corbett, T. J. Spera, and T. Andrada, “Thermal infrared pushbroom imagery acquisition and processing,” in Modern Utilization of Infrared Technology VII, I. J. Spiro, ed., Proc. SPIE 304, 37–56 (1981).
  10. D. J. Diner, C. J. Bruegge, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, P. J. Sellers, J. Clark, J. A. Daniels, E. D. Danielson, V. G. Duval, K. P. Klaasen, G. W. Lilienthal, D. I. Nakamoto, R. J. Pagano, and T. H. Reilly, “MISR: a multiangle imaging spectroradiometer for geophysical and climatological research,” IEEE Trans. Geosci. Remote Sens. 27, 200–214 (1989).
  11. P. Silverglate, K. L. Shu, D. Preston, J. Stein, and F. Sileo, “Concepts for spaceborne hyperspectral imagery using prism spectrometers,” in Advanced Microdevices and Space Science Sensors, J. A. Cutts, ed., Proc. SPIE 2267, 112–120 (1995).
  12. O. Saint-Pe, O. Donnadieu, R. Davancens, D. Charlton, A. Menardi, M. Fabbricotti, B. Harnisch, R. Meynart, and B. Kunkel, “Development of a 2-D array for 1 to 2.35 μm hyperspectral imager,” in Infrared Detectors for Remote Sensing: Physics, Materials, and Devices, R. E. Longshore and J. W. Baars, eds., Proc. SPIE 2816, 138–149 (1997).
  13. M. Neviere and W. R. Hunter, “Analysis of the changes in efficiency across the ruled area of a concave diffraction grating,” Appl. Opt. 19, 2059–2065 (1980).
  14. E. G. Loewen, E. K. Popov, L. V. Tsonev, and J. Hoose, “Experimental study of local and integral efficiency behavior of a concave holographic diffraction grating,” J. Opt. Soc. Am. A 7, 1764–1769 (1990).
  15. M. C. Hutley, Diffraction Gratings (Academic, Orlando, Fla., 1982).
  16. P. D. Maker and R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. 10, 2516–2519 (1992).
  17. P. D. Maker and R. E. Muller, “Continuous phase and amplitude holographic elements,” U.S. patent 5,393,634 (28 February 1995).
  18. P. D. Maker, D. W. Wilson, and R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made be E-beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen and P. S. Guilfoyle, eds., Vol. 62 of SPIE Critical Reviews Series (SPIE, Bellingham, Wash., 1996), pp. 415–430.
  19. X. Wang, J. R. Leger, and R. H. Rediker, “Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation,” Appl. Opt. 36, 4660–4665 (1997).
  20. G. P. Behrmann and M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997).
  21. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976–983 (1989).
  22. H. Dammann, “Blazed synthetic phase only holograms,” Optik 31, 95–104 (1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited