OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 31 — Nov. 1, 1998
  • pp: 7273–7275

Modeling the optical constants of diamonds from 0.06 to 30 eV

Aleksandra B. Djurišić and E. Herbert Li  »View Author Affiliations

Applied Optics, Vol. 37, Issue 31, pp. 7273-7275 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (71 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of diamonds are modeled over a wide spectral range with the modified Adachi’s model. Model parameters were estimated by use of the acceptance-probability-controlled simulated annealing algorithm. The employed model is quite flexible, as it uses an adjustable broadening function at each critical point. The broadening function can vary over a range of functions with similar kernels but different wings, so that extended absorption tails inherent to the conventional Lorentzian broadening can be eliminated. Good agreement with the experimental data is obtained in the entire investigated range. The obtained relative rms error for the real part of the index of refraction equals 4.7%, whereas for the imaginary part of the index-of-refraction relative rms error is 3.6%.

© 1998 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.4760) Materials : Optical properties

Original Manuscript: May 19, 1998
Revised Manuscript: July 21, 1998
Published: November 1, 1998

Aleksandra B. Djurišić and E. Herbert Li, "Modeling the optical constants of diamonds from 0.06 to 30 eV," Appl. Opt. 37, 7273-7275 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. F. Edwards, H. R. Philipp, “Cubic carbon (diamond),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 665–673.
  2. H. R. Philipp, E. A. Taft, “Kramers–Kronig analysis of reflectance data for diamond,” Phys. Rev. 136, A1445–A1448 (1964). [CrossRef]
  3. H. R. Philipp, E. A. Taft, “Optical properties of diamond in the vacuum ultraviolet,” Phys. Rev. 127, 159–161 (1962). [CrossRef]
  4. W. C. Walker, J. Osantowski, “Ultraviolet optical properties of diamond,” Phys. Rev. 134, A153–A157 (1964). [CrossRef]
  5. D. F. Edwards, E. Ochoa, “Infrared refractive index of diamond,” J. Opt. Soc. Am. 71, 607–608 (1981). [CrossRef]
  6. O. Stenzel, R. Petrich, “Flexible construction of error functions and their minimization: application to calculation of optical constants of absorbing and scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989 (1995). [CrossRef]
  7. L. H. Robins, E. N. Farabaugh, A. Feldman, “Determination of optical constants of diamond thin films by transmittance and reflectance spectroscopy: experiment and model calculations,” Diamond Films Technol. 5, 199–224 (1995).
  8. A. D. Papadopoulos, E. Anastassakis, “Optical properties of diamond,” Phys. Rev. B 43, 5090–5097 (1991). [CrossRef]
  9. M. Cardona, Modulation Spectroscopy (Academic, New York, 1969), pp. 15–23.
  10. S. Ozaki, S. Adachi, “Spectroscopic ellipsometry and thermoreflectance of GaAs,” J. Appl. Phys. 78, 3380–3386 (1995). [CrossRef]
  11. A. D. Rakić, M. L. Majewski, “Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi’s model,” J. Appl. Phys. 80, 5909–5915 (1996). [CrossRef]
  12. C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11749–11767 (1992). [CrossRef]
  13. O. Stenzel, R. Petrich, W. Scharff, A. Tikhonravov, V. Hopfe, “A hybrid method for determination of optical thin film constants,” Thin Solid Films 207, 324–329 (1992). [CrossRef]
  14. A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogenously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996). [CrossRef]
  15. C. W. Higginbotham, M. Cardona, F. H. Pollak, “Intrinsic piezoreffingence of Ge, Si and GaAs,” Phys. Rev. 184, 821–829 (1969). [CrossRef]
  16. A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited