OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 31 — Nov. 1, 1998
  • pp: 7310–7319

Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results

George N. Constantinides, Drossos Gintides, Spilios E. Kattis, Kiriakie Kiriaki, Christakis A. Paraskeva, Alkiviades C. Payatakes, Demosthenes Polyzos, Stephanos V. Tsinopoulos, and Spyros N. Yannopoulos  »View Author Affiliations


Applied Optics, Vol. 37, Issue 31, pp. 7310-7319 (1998)
http://dx.doi.org/10.1364/AO.37.007310


View Full Text Article

Enhanced HTML    Acrobat PDF (1322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A laboratory prototype of a novel experimental apparatus for the analysis of spherical and axisymmetric nonspherical particles in liquid suspensions has been developed. This apparatus determines shape, volume, and refractive index, and this is the main difference of this apparatus from commercially available particle analyzers. Characterization is based on the scattering of a monochromatic laser beam by particles [which can be inorganic, organic, or biological (such as red blood cells and bacteria)] and on the strong relation between the light-scattering pattern and the morphology and the volume, shape, and refractive index of the particles. To keep things relatively simple, first we focus attention on axisymmetrical particles, in which case hydrodynamic alignment can be used to simplify signal gathering and processing. Fast and reliable characterization is achieved by comparison of certain properly selected characteristics of the scattered-light pattern with the corresponding theoretical values, which are readily derived from theoretical data and are stored in a look-up table. The data in this table were generated with a powerful boundary-element method, which can solve the direct scattering problem for virtually arbitrary shapes. A specially developed fast pattern-recognition technique makes possible the on-line characterization of axisymmetric particles. Successful results with red blood cells and bacteria are presented.

© 1998 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(120.5710) Instrumentation, measurement, and metrology : Refraction
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(290.0290) Scattering : Scattering
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: June 22, 1998
Published: November 1, 1998

Citation
George N. Constantinides, Drossos Gintides, Spilios E. Kattis, Kiriakie Kiriaki, Christakis A. Paraskeva, Alkiviades C. Payatakes, Demosthenes Polyzos, Stephanos V. Tsinopoulos, and Spyros N. Yannopoulos, "Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results," Appl. Opt. 37, 7310-7319 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-31-7310

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited