OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 31 — Nov. 1, 1998
  • pp: 7368–7377

Acoustic field of a medical ultrasound probe operated in continuous-wave mode investigated by TV holography

Rolf Rustad  »View Author Affiliations


Applied Optics, Vol. 37, Issue 31, pp. 7368-7377 (1998)
http://dx.doi.org/10.1364/AO.37.007368


View Full Text Article

Enhanced HTML    Acrobat PDF (7088 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-averaged TV holography has been shown to be a useful technique for investigating acoustic fields in transparent media. The theory of time-averaged TV-holography measurements of ultrasonic fields in water is described. Projections of the phase and the amplitude of a 3.25-MHz ultrasonic field from an annular ultrasound probe operated in cw mode are presented. Quantitative measurements with a spatial resolution of better than 100 μm have been obtained. A set of such projections may be processed into a three-dimensional mapping of the phase and the amplitude of the acoustic field by tomographic techniques. This process is described, and an example of a tomographic reconstruction of the same ultrasonic field is presented.

© 1998 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

History
Original Manuscript: July 9, 1998
Revised Manuscript: July 9, 1998
Published: November 1, 1998

Citation
Rolf Rustad, "Acoustic field of a medical ultrasound probe operated in continuous-wave mode investigated by TV holography," Appl. Opt. 37, 7368-7377 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-31-7368


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. R. Barnes, C. J. Burton, “Visual methods for studying ultrasonic phenomena,” J. Appl. Phys. 20, 286–294 (1949). [CrossRef]
  2. A. Korpel, L. W. Kessler, M. Ahmed, “Bragg diffraction sampling of a sound field,” J. Acoust. Soc. Am. 51, 1582–1592 (1972). [CrossRef]
  3. C. V. Raman, N. S. Nagendra Nath, “The diffraction of light by high frequency sound waves, part I,” Proc. Indian Acad. Sci. Sec. A, 406–412 (1936).
  4. R. Reibold, W. Molkenstruck, “Light diffraction tomography applied to the investigation of ultrasonic fields. I: continuous waves,” Acoustica 56, 180–192 (1984).
  5. W. K. Fischer, M. Zambuto, “Optical holographic detection of ultrasonic waves,” in Acoustical Holography, A. F. Metherell, ed. (Plenum, New York, 1971), Vol. 3, pp. 349–362. [CrossRef]
  6. P. Kwiek, R. Reibold, “Holographic investigation of transient ultrasonic fields,” Acoust. Lett. 7, 167–172 (1984).
  7. O. J. Løkberg, “Sound in flight: measurement of sound fields by use of TV holography,” Appl. Opt. 33, 2574–2584 (1994). [CrossRef] [PubMed]
  8. M. Espeland, O. J. Løkberg, R. Rustad, “Full field tomographic reconstruction of sound fields using TV holography,” J. Acoust. Soc. Am. 98, 280–287 (1995). [CrossRef]
  9. O. J. Løkberg, M. Espeland, H. M. Pedersen, “Tomographic reconstruction of sound fields using TV holography,” Appl. Opt. 34, 1640–1645 (1995). [CrossRef] [PubMed]
  10. R. Rustad, O. J. Løkberg, H. M. Pedersen, K. Klepsvik, T. Støren, “TV holography measurements of underwater acoustic fields,” J. Acoust. Soc. Am. 102, 1904–1906 (1997). [CrossRef]
  11. VINGMED Sound 3.25 MHz Annular Phased Array Transducer, TK100104.
  12. S. Ellingsrud, G. O. Rosvold, “Analysis of data-based TV holography system used to measure small vibration amplitudes,” J. Opt. Soc. Am. 9, 237–251 (1992). [CrossRef]
  13. W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967). [CrossRef]
  14. K. Høgmoen, O. J. Løkberg, “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Appl. Opt. 16, 1869–1875 (1977). [CrossRef] [PubMed]
  15. C. C. Aleksoff, “Time-averaged holography extended,” Appl. Phys. Lett. 14, 23 (1969). [CrossRef]
  16. W. A. Riley, W. R. Klein, “Piezo-optic coefficients of liquids,” J. Acoust. Soc. Am. 42, 1258–1261 (1967). [CrossRef]
  17. J. Radon, “Über die bestimmung von Funktionen durch ihre Intergralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math. Phys. Kl. 69 (1917).
  18. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, New York, 1988).
  19. K. Høgmoen, H. M. Pedersen, “Measurement of small vibrations using electronic speckle pattern interferometry: theory,” J. Opt. Soc. Am. 67, 1578–1583 (1977). [CrossRef]
  20. B. A. J. Angelsen, Waves, Signals and Signal Processing in Medical Ultrasonics (Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, Trondheim, Norway, 1996), Vol. I, pp. 6.2–6.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited