OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 31 — Nov. 1, 1998
  • pp: 7447–7458

Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media

Maria Angela Franceschini, Sergio Fantini, L. Adelina Paunescu, John S. Maier, and Enrico Gratton  »View Author Affiliations


Applied Optics, Vol. 37, Issue 31, pp. 7447-7458 (1998)
http://dx.doi.org/10.1364/AO.37.007447


View Full Text Article

Enhanced HTML    Acrobat PDF (708 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have experimentally investigated the meaning of the effective optical absorption [μ a (eff)] and the reduced scattering [μ s (eff)] coefficients measured on the surfaces of two-layered turbid media, using the diffusion equation for homogeneous, semi-infinite media. We performed frequency-domain spectroscopy in a reflectance geometry, using source–detector distances in the range 1.5–4.5 cm. We measured 100 samples, each made of one layer (thickness in the range 0.08–1.6 cm) on top of one semi-infinite block. The optical properties of the samples were similar to those of soft tissues in the near infrared. We found that the measured effective optical coefficients are representative of the underlying block if the superficial layer is less than ∼0.4 cm thick, whereas they are representative of the superficial layer if it is more than ∼1.3 cm thick.

© 1998 Optical Society of America

OCIS Codes
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(300.0300) Spectroscopy : Spectroscopy
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: April 21, 1998
Revised Manuscript: July 27, 1998
Published: November 1, 1998

Citation
Maria Angela Franceschini, Sergio Fantini, L. Adelina Paunescu, John S. Maier, and Enrico Gratton, "Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media," Appl. Opt. 37, 7447-7458 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-31-7447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).
  2. D. A. Benaron, B. Chance, M. Ferrari, eds., Photon Propagation in Tissues III, Proc. SPIE3194 (1998).
  3. H. Wallberg, A. Alveryd, K. Nasiell, P. Sundelin, U. Bergvall, S. Troell, “Diaphanography in benign breast disorders: correlation with clinical examination, mammography, cytology and histology,” Acta Radiol. Diagn. 26, 129–136 (1985).
  4. Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Muller, ed. (SPIE, Bellingham, Wash.1993), pp. 283–316.
  5. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). [CrossRef] [PubMed]
  6. N. B. Hampson, C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia,” J. Appl. Physiol. 64, 2449–2457 (1988). [PubMed]
  7. V. Quaresima, M. A. Franceschini, S. Fantini, E. Gratton, M. Ferrari, “Difference in leg muscles oxygenation during treadmill exercise by a new near infrared frequency-domain oximeter,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 116–120 (1998). [CrossRef]
  8. S. Homma, T. Fukunaga, A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signals in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996). [CrossRef] [PubMed]
  9. S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43–47 (1993). [CrossRef] [PubMed]
  10. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995). [CrossRef]
  11. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  12. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995). [CrossRef]
  13. M. Miwa, Y. Ueda, B. Chance, “Development of time resolved spectroscopy system for quantitative non-invasive tissue measurement,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995). [CrossRef]
  14. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997). [CrossRef] [PubMed]
  15. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994). [CrossRef] [PubMed]
  16. M. Kohl, M. Cope, M. Essenpreis, D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994). [CrossRef] [PubMed]
  17. J. T. Bruulsema, J. E. Hayward, T. J. Farrel, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Böcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997). [CrossRef] [PubMed]
  18. R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988). [CrossRef] [PubMed]
  19. H. Taitelbaum, S. Havlin, G. H. Weiss, “Tissue characterization and imaging using photon density waves,” Appl. Opt. 28, 2245–2249 (1989). [CrossRef] [PubMed]
  20. M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988). [CrossRef] [PubMed]
  21. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef] [PubMed]
  22. I. Dayan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium: a diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992). [CrossRef]
  23. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  24. T. J. Farrel, M. S. Patterson, M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998). [CrossRef]
  25. A. H. Hielscher, H. Liu, L. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of blood oxygenation in the brain by time resolved reflectance spectroscopy. I. Influence of the skin, skull, and meninges,” in Biochemical Diagnostic Instrumentation, R. F. Bonner, G. E. Cohn, T. M. Laue, A. V. Priezzhev, eds., Proc. SPIE2136, 15–25 (1994). [CrossRef]
  26. A. Cerussi, J. Maier, S. Fantini, M. A. Franceschini, E. Gratton, “The frequency-domain multi-distance method in the presence of curved boundaries,” OSA Trends in Optics and Photonics on Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 92–97.
  27. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995). [CrossRef] [PubMed]
  28. M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, E. Gratton, “Optical study of the skeletal muscle during exercise with a second generation frequency-domain tissue oximeter,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 807–814 (1997). [CrossRef]
  29. S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994). [CrossRef]
  30. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994). [CrossRef] [PubMed]
  31. M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multi-channel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds. Proc. SPIE2389, 264–273 (1995). [CrossRef]
  32. S. Fantini, M. A. Franceschini, E. Gratton, “Effective source term in the diffusion equation for photon transport in turbid media,” Appl. Opt. 36, 156–163 (1997). [CrossRef] [PubMed]
  33. M. Cope, P. van der Zee, M. Essenpreis, S. R. Arridge, D. T. Delpy, “Data analysis methods for near infrared spectroscopy of tissues: problems in determining the relative cytochrome aa3 concentration,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE1431, 251–263 (1991).
  34. S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995). [CrossRef]
  35. A. D. Edwards, C. Richardson, P. Van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, E. O. R. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol. 75, 1884–1889 (1993). [PubMed]
  36. R. A. de Blasi, M. Cope, C. Elwell, F. Safoue, M. Ferrari, “Non invasive measurement of human forearm oxygen consumption by near infrared spectroscopy,” Eur. J. Appl. Physiol. 67, 20–25 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited