## Volterra Series Modeling of Spatial Light Modulators

Applied Optics, Vol. 37, Issue 32, pp. 7472-7481 (1998)

http://dx.doi.org/10.1364/AO.37.007472

Acrobat PDF (320 KB)

### Abstract

We present a multiple-input, single-output, weakly nonlinear model of spatial light modulators by use of a second-order Volterra series and describe an experimental method to measure the nonlinear transfer functions by means of sinusoidal perturbation and synchronous detection with a lock-in amplifier. We also present an application of this method to a liquid-crystal light valve.

© 1998 Optical Society of America

**OCIS Codes**

(230.3720) Optical devices : Liquid-crystal devices

(230.6120) Optical devices : Spatial light modulators

**Citation**

Mark Storrs, David J. Mehrl, John F. Walkup, and Thomas F. Krile, "Volterra Series Modeling of Spatial Light Modulators," Appl. Opt. **37**, 7472-7481 (1998)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-32-7472

Sort: Year | Journal | Reset

### References

- S. G. Batsell, T. L. Jong, J. F. Walkup, and T. F. Krile, “Noise limitations in optical linear algebra processors,” Appl. Opt. 29, 2084–2090 (1990).
- D. D. Weiner and J. F. Spina, Sinusoidal Analysis and Modeling of Weakly Nonlinear Circuits (Van Nostrand Reinhold, New York, 1980).
- R. J. P. De Figueriedo, “A generalized Fock space framework for nonlinear system and signal analysis,” IEEE Trans. Circuits Syst. 30, 637–647 (1983).
- I. W. Sandburg, “A perspective on system theory,” IEEE Trans. Circuits Syst. 31, 88–103 (1984).
- W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach (Johns Hopkins U. Press, Baltimore, Md., 1981).
- M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (Wiley, New York, 1980).
- M. Schetzen, “Nonlinear system modeling based on the Wiener theory,” Proc. IEEE 69, 1557–1573 (1981).
- E. Bedrosian and S. O. Rice, “The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs,” Proc. IEEE 59, 1688–1707 (1971).
- I. W. Sandburg, “Expansion for nonlinear systems,” Bell Syst. Tech. J. 61, 159–199 (1982).
- A. A. M. Saleh, “Matrix analysis of mildly nonlinear, multiple-input, multiple-output systems with memory,” Bell Syst. Tech. J 61, 2221–2243 (1982).
- J. C. Peyton Jones and S. A. Billings, “Interpretation of non-linear frequency response functions,” Int. J. Control 52, 319–346 (1990).
- J. S. Bendat, Nonlinear System Analysis and Identification from Random Data (Wiley, New York, 1990).
- Y. W. Lee and M. Schetzen, “Measurement of the Wiener kernels of a non-linear system by cross-correlation,” Int. J. Control 2, 237–254 (1965).
- A. S. French and E. G. Butz, “Measuring the Wiener kernels of a non-linear system using the fast Fourier transform algorithm,” Int. J. Control 3, 529–539 (1973).
- S. Chen and S. A. Billings, “Representations on non-linear system: the NARMAX model,” Int. J. Control 49, 1013–1032 (1989).
- M. J. Korenberg, “Identifying nonlinear difference equation and functional expansion representations: the fast orthogonal algorithm,” Ann. Biomed. Eng. 16, 123–142 (1988).
- S. Boyd, Y. S. Tang, and L. O. Chua, “Measuring Volterra kernels,” IEEE Trans. Circuits Syst. CAS-30, 571–577 (1983).
- C. Evans, D. Rees, L. Jones, and M. Weiss, “Periodic signals for measuring nonlinear Volterra kernels,” IEEE Trans. Instrum. Meas. 45, 362–371 (1996).
- J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
- W. P. Bleha, L. T. Lipton, E. Wiener-Avnear, J. Grinberg, P. G. Reif, D. Casasent, H. B. Brown, and B. V. Markevitch, “Application of the liquid crystal light valve to real-time optical data processing,” Opt. Eng. 17, 371–384 (1978).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.