OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 32 — Nov. 10, 1998
  • pp: 7560–7567

Phase correlations at neighboring intensity critical points in Gaussian random wave fields

Isaac Freund  »View Author Affiliations


Applied Optics, Vol. 37, Issue 32, pp. 7560-7567 (1998)
http://dx.doi.org/10.1364/AO.37.007560


View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase correlations are studied for neighboring critical points of the intensity in an isotropic Gaussian random wave field. Significant correlations and anticorrelations are found that extend out to at least the fifth nearest neighbors. A theoretical interpretation of the empirical data is attempted within the framework of the phase autocorrelation and the probability-density functions of extended two-dimensional random phase fields. It is found, however, that adaptations of these theoretical models are unable to account satisfactorily, or even qualitatively, for the extensive phase correlations that are present in these fields.

© 1998 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(110.6150) Imaging systems : Speckle imaging
(170.7050) Medical optics and biotechnology : Turbid media
(290.5880) Scattering : Scattering, rough surfaces

History
Original Manuscript: December 11, 1997
Revised Manuscript: April 1, 1998
Published: November 10, 1998

Citation
Isaac Freund, "Phase correlations at neighboring intensity critical points in Gaussian random wave fields," Appl. Opt. 37, 7560-7567 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-32-7560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978); “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982); “Phase-retrieval imaging problems,” in International Trends in Optics, J. W. Goodman, ed., Vol. 1 of International Commission for Optics Series (Academic, Ann Arbor, Mich., 1991), pp. 238–249.
  2. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  3. J. C. Dainty, J. R. Fienup, “Phase retrieval and image reconstruction for astronomy,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, New York, 1987), pp. 231–275.
  4. R. H. T. Bates, M. J. McDonnell, Image Restoration and Reconstruction (Clarendon, Oxford, 1989).
  5. R. H. T. Bates, W. R. Fright, “Composite two-dimensional phase restoration procedure,” J. Opt. Soc. Am. 73, 358–365 (1983). [CrossRef]
  6. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), pp. 219–226.
  7. C. Roddier, F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993);F. Roddier, C. Roddier, “Wavefront reconstruction using iterative Fourier transforms,” Appl. Opt. 30, 1325–1327 (1991);F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402–1403 (1990). [CrossRef] [PubMed]
  8. R. P. Millane, “Multidimensional phase problems,” J. Opt. Soc. Am. A 13, 725–734 (1996);“Phase-retrieval in crystallography and optics,” J. Opt. Soc. Am. A 7, 394–411 (1990). [CrossRef]
  9. T. Mavroidis, J. C. Dainty, “Imaging after double passage through a random screen,” Opt. Lett. 15, 857–859 (1990);T. Mavroidis, C. J. Solomon, J. C. Dainty, “Imaging a coherently illuminated object after double passage through a random screen,” J. Opt. Soc. Am. A 8, 1003–1013 (1991). [CrossRef] [PubMed]
  10. I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990);“Correlation imaging through multiply scattering media,” Phys. Lett. A 147, 502–506 (1990); “Image reconstruction through multiple scattering media,” Opt. Commun. 86, 216–227 (1991); “Diffractometry through multiple scattering media,” Opt. Commun. 87, 5–8 (1991); “Time-reversal symmetry and image reconstruction through multiple scattering media,” J. Opt. Soc. Am. A 9, 456–463 (1992). [CrossRef]
  11. H. Kadono, N. Takai, T. Asakura, “Statistical properties of the speckle phase in the diffraction region,” J. Opt. Soc. Am. A 3, 1080–1089 (1986);H. Kadono, T. Asakura, “Statistical properties of the speckle phase in the optical imaging system,” J. Opt. Soc. Am. A 2, 787–792 (1985);H. Kadono, N. Takai, T. Asakura, “Experimental study of the laser speckle phase in the image field,” Opt. Acta 32, 1223–1234 (1985). [CrossRef]
  12. B. B. Gorbatenko, I. S. Klimenko, L. A. Maksimova, V. P. Ryabukho, “Statistical properties of the spatial distribution of the phase of a developed speckle field,” Sov. Tech. Phys. Lett. 18, 35–36 (1992) [Pis’ma Zh. Tekh. Fiz. 18, 26–28 (1992)]; “Some statistical properties of the phase difference in the developed speckle-modulated field,” Opt. Spectrosc. 78, 283–286 (1995) [Opt. Spektrosk. 78, 316–319 (1995)].
  13. I. Freund, “Optical vortices in Gaussian random wave fields: statistical probability densities,” J. Opt. Soc. Am. A 11, 1644–1652 (1994);“Critical point level-crossing geometry in random wave fields, J. Opt. Soc. Am. A 14, 1911–1927 (1997);“‘1001’ correlations in random wave fields,” Waves Random Media 8, 119–158 (1998). [CrossRef]
  14. N. Shvartsman, I. Freund, “Wave-field phase singularities: near neighbor correlations and anticorrelations,” J. Opt. Soc. Am. A 11, 2710–2718 (1994);“Vortices in random wave fields: nearest neighbor anticorrelations,” Phys. Rev. Lett. 72, 1008–1011 (1994). [CrossRef] [PubMed]
  15. I. Freund, D. Kessler, “Phase autocorrelation of random wave fields,” Opt. Commun. 124, 322–332 (1995).
  16. J. F. Nye, M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974). [CrossRef]
  17. M. Berry, “Singularities in waves and rays,” in Physics of Defects, R. Balian, M. Kleman, J.-P. Poirier, eds. (North-Holland, Amsterdam, 1981), pp. 453–549.
  18. M. Berry, “Disruption of wave-fronts: statistics of dislocations in incoherent Gaussian random waves,” J. Phys. A 11, 27–37 (1978). [CrossRef]
  19. N. B. Baranova, B. Ya Zel’dovich, A. V. Mamaev, N. Pilipetskii, V. V. Shkukov, “Dislocations of the wave-front of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981); N. B. Baranova, B. Ya Zel’dovich, “Dislocations of the wave-front surface and zeros of amplitude,” Sov. Phys. JETP 53, 925–929 (1981); N. B. Baranova, A. V. Mamaev, N. Pilipetskii, V. V. Shkunov, B. Ya Zel’dovich, “Wave-front dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525–528 (1983). [CrossRef]
  20. I. Freund, N. Shvartsman, V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun. 101, 247–264 (1993);I. Freund, V. Freilikher, “Parameterization of anisotropic vortices,” J. Opt. Soc. Am. A 14, 1902–1910 (1997). [CrossRef]
  21. D. W. Robinson, “Phase unwrapping methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993), pp. 194–229.
  22. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268–3270 (1989);J. M. Huntley, J. R. Buckland, “Characterization of sources of 2π phase discontinuity in speckle interferograms,” J. Opt. Soc. Am. A 12, 1990–1996 (1995). [CrossRef] [PubMed]
  23. D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627–3632 (1991). [CrossRef] [PubMed]
  24. D. Middleton, Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960), pp. 335–368.
  25. M. Abromowits, I. Stegun, eds., Handbook of Mathematical Functions, Nat. Bur. Stand. Appl. Math. Ser. 55 (U.S. Government Printing Office, Washington, D.C., 1964).
  26. J. W. Goodman, Statistical Optics (Wiley, New York, 1995).
  27. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1985), pp. 9–75.
  28. A. Weinberg, “Percolation threshold of a two-dimensional continuum system,” Phys. Rev. B 26, 1352–1361 (1982). [CrossRef]
  29. A. Weinberg, B. I. Halperin, “Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns,” Phys. Rev. B 26, 1362–1368 (1982). [CrossRef]
  30. N. Shvarstman, I. Freund, “Speckle spots ride phase saddles sidesaddle,” Opt. Commun. 117, 228–234 (1994). [CrossRef]
  31. I. Freund, “Saddles, singularities, and extrema in random phase fields,” Phys. Rev. E 52, 2348–2360 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited