OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 32 — Nov. 10, 1998
  • pp: 7587–7595

Multigrid algorithms for processing fringe-pattern images

Salvador Botello, Jose L. Marroquin, and Mariano Rivera  »View Author Affiliations


Applied Optics, Vol. 37, Issue 32, pp. 7587-7595 (1998)
http://dx.doi.org/10.1364/AO.37.007587


View Full Text Article

Enhanced HTML    Acrobat PDF (2207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a modification of the multigrid method for the minimization of quadratic cost functions that result from the formulation of several problems in the digital processing of fringe-pattern images by using the Bayesian estimation-theory framework. With this modification the method can be applied to irregular domains and results in substantial savings in computational cost. We compare it with other state-of-the-art numerical techniques and present examples of its application to image smoothing without edge effects, robust quadrature filtering for the phase demodulation of spatial-carrier fringe patterns, and robust phase unwrapping.

© 1998 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(120.3180) Instrumentation, measurement, and metrology : Interferometry

History
Original Manuscript: December 17, 1997
Revised Manuscript: June 16, 1998
Published: November 10, 1998

Citation
Salvador Botello, Jose L. Marroquin, and Mariano Rivera, "Multigrid algorithms for processing fringe-pattern images," Appl. Opt. 37, 7587-7595 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-32-7587


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Marroquin, S. Mitter, T. Poggio, “Probabilistic solution of ill-posed problems in computational vision,” J. Am. Statis. Assoc. 82,76–89 (1987).
  2. J. L. Marroquin, M. Servin, J. E. Figueroa, “Robust quadrature filters,” J. Opt. Soc. Am. A 14,779–791 (1997).
  3. J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of phase from fringe pattern images,” J. Opt. Soc. Am. A 14,1742–1753 (1997).
  4. S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intel. 6,721–741 (1984).
  5. K. Creath, “Phase measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Vol. 26, pp. 349–393.
  6. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform methods of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72,156–160 (1982).
  7. Th. Kreis, “Digital holographic interference phase measurement using the Fourier transform method,” J. Opt. Soc. Am. A 3,847–855 (1986).
  8. D. Malacara, ed., Optical Shop Testing (Wiley, New York, 1992).
  9. M. Rivera, J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “A fast algorithm for integrating inconsistent gradient fields,” Appl. Opt. 36,8381–8390 (1997).
  10. M. Rivera, R. Rodriguez-Vera, J. L. Marroquin, “Robust procedure for fringe analysis,” Appl. Opt. 36,8391–8396 (1997).
  11. J. M. Huntly, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28,3268–3270 (1989).
  12. K. A. Stetson, J. Wahid, P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 36,4830–4838 (1997).
  13. D. C. Ghiglia, L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11,107–117 (1994).
  14. J. L. Marroquin, M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12,2393–2400 (1995).
  15. M. Rivera, “Integración de gradientes inconsistentes,” Ph.D. dissertation (Centro de Investigaciones en Optica, Universidad de Guanajuato, Mexico, 1997).
  16. G. H. Gollub, C. F. Van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1990).
  17. W. L. Briggs, Multigrid Tutorial (Lancaster Press, Lancaster, Pa., 1987).
  18. J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15,1536–1544 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited