OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 32 — Nov. 10, 1998
  • pp: 7611–7623

Two-color holography in reduced near-stoichiometric lithium niobate

Harald Guenther, Roger Macfarlane, Yasunori Furukawa, Kenji Kitamura, and Ratnakar Neurgaonkar  »View Author Affiliations


Applied Optics, Vol. 37, Issue 32, pp. 7611-7623 (1998)
http://dx.doi.org/10.1364/AO.37.007611


View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explored a number of factors affecting the properties relevant to holographic optical data storage by using a two-color recording scheme in reduced, near-stoichiometric lithium niobate. Two-color, or photon-gated, recording is achieved by use of 852-nm information-carrying beams and 488-nm gating light. Readout at 852 nm is nondestructive, with a gating ratio of ∼104. Recording sensitivity, gating ratio, dynamic range, and dark decay were measured for crystals of differing stoichiometry, degree of reduction, wavelength of the gating light, temperature, and optical power density. The two-color sensitivity per incident photon is still somewhat less than that of the one-color process at 488 nm for ∼1 W/cm2 of gating light but is essentially the same in terms of absorbed photons. Two-color recording is an attractive way of achieving nondestructive readout in a read–write material, and it allows selective optical erasure.

© 1998 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5320) Materials : Photorefractive materials
(190.4180) Nonlinear optics : Multiphoton processes
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials

History
Original Manuscript: April 29, 1998
Revised Manuscript: July 20, 1998
Published: November 10, 1998

Citation
Harald Guenther, Roger Macfarlane, Yasunori Furukawa, Kenji Kitamura, and Ratnakar Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-32-7611


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  2. F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968). [CrossRef]
  3. G. A. Alphonse, W. Phillips, “Read–write holographic memory with iron-doped lithium niobate,” Ferroelectrics 11, 397–401 (1976). [CrossRef]
  4. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995). [CrossRef]
  5. J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  6. M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2374 (1996). [CrossRef] [PubMed]
  7. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997). [CrossRef]
  8. F. Jermann, J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  9. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  10. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981). [CrossRef]
  11. R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995). [CrossRef]
  12. A. Yariv, S. S. Orlov, G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996). [CrossRef]
  13. M. Bashaw, J. Heanue, “Quasi-stabilized ionic gratings in photorefractive media for multiplex holography,” J. Opt. Soc. Am. B 14, 2024–2042 (1997). [CrossRef]
  14. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972). [CrossRef]
  15. F. Micheron, G. Bismuth, “Field and time thresholds for the electrical fixation of holograms in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973);J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974). [CrossRef] [PubMed]
  16. Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993). [CrossRef] [PubMed]
  17. H. C. Kuelich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987). [CrossRef]
  18. D. Psaltis, F. Mok, H. S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994). [CrossRef] [PubMed]
  19. E. S. Bjornson, M. C. Bashaw, L. Hesselink, “Digital quasi-phase-matched two-color nonvolatile holographic storage,” Appl. Opt. 36, 3090–3106 (1997). [CrossRef] [PubMed]
  20. D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974). [CrossRef]
  21. H. Guenther, G. Wittmann, R. M. Macfarlane, R. R. Neurgaonkar, “Intensity dependence and white light gating of two-color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305–1307 (1997). [CrossRef]
  22. D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976). [CrossRef]
  23. K. Buse, F. Jermann, E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993). [CrossRef]
  24. K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995). [CrossRef]
  25. F. Jermann, M. Simon, E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995). [CrossRef]
  26. Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997). [CrossRef]
  27. D. Lande, S. S. Orlov, A. Akella, L. Hesselink, R. R. Neurgaonkar, “Digital holographic storage system incorporating optical fixing,” Opt. Lett. 22, 1722–1724 (1997). [CrossRef]
  28. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992). [CrossRef]
  29. D. M. Smyth, “Defects and transport in LiNbO3,” Ferroelectrics 50, 93–102 (1983). [CrossRef]
  30. M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973). [CrossRef]
  31. K. L. Sweeney, L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983). [CrossRef]
  32. L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984). [CrossRef]
  33. O. F. Schirmer, S. Juppe, J. Koppitz, “ESR—optical and photovoltaic studies of reduced LiNbO3,” Cryst. Latt. Def. Amorph. Mater. 16, 353–357 (1987).
  34. O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991). [CrossRef]
  35. J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).
  36. P. Lerner, C. Legras, J. P. Duman, “Stoechiometrie des monocristaux de metaniobate de lithium,” J. Cryst. Growth 3/4, 231–235 (1968). [CrossRef]
  37. D. Dutt, F. J. Feigl, G. G. DeLeo, “Optical absorption and electron paramagnetic resonance studies of chemically reduced lithium niobate,” J. Phys. Chem. Solids 51, 407–415 (1990). [CrossRef]
  38. H.-J. Reyher, R. Schulz, O. Thiemann, “Investigation of the optical absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994). [CrossRef]
  39. Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993). [CrossRef]
  40. B. C. Grabmaier, F. Otto, “Growth and investigation of MgO doped LiNbO3,” J. Cryst. Growth 79, 682–688 (1986). [CrossRef]
  41. R. L. Byer, J. F. Young, R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys. 41, 2320–2325 (1970). [CrossRef]
  42. U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993). [CrossRef]
  43. I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993). [CrossRef]
  44. O. F. Schirmer, D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978). [CrossRef]
  45. A. Grone, S. Kapphan, “Combination bands of libration + vibration of OH/OD centres in ABO3 crystals,” J. Phys. Cond. Matter 7, 3051–3061 (1995). [CrossRef]
  46. R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989). [CrossRef]
  47. P. Günter, J.-P. Huignard, “Photorefractive materials and their applications,” in Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 47–52.
  48. Y. S. Bai, R. Kachru, L. Hesselink, R. M. Macfarlane, “Gated recording of holograms using rare-earth doped ferroelectric materials,” U.S. patent5,665,493 (9September1997).
  49. Y. S. Bai, R. R. Neurgaonkar, R. Kachru, “High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous- wave lasers,” Opt. Lett. 22, 334–336 (1997). [CrossRef] [PubMed]
  50. F. H. Mok, G. W. Burr, D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited