OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 32 — Nov. 10, 1998
  • pp: 7632–7644

Unwrapping of digital speckle-pattern interferometry phase maps by use of a minimum L 0-norm algorithm

Pablo D. Ruiz, Guillermo H. Kaufmann, and Gustavo E. Galizzi  »View Author Affiliations


Applied Optics, Vol. 37, Issue 32, pp. 7632-7644 (1998)
http://dx.doi.org/10.1364/AO.37.007632


View Full Text Article

Enhanced HTML    Acrobat PDF (3854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of a minimum L0-norm unwrapping algorithm is investigated by use of synthetic digital speckle-pattern interferometry (DSPI) wrapped phase maps that simulate experimentally obtained data. This algorithm estimates its own weights to mask inconsistent pixels. Particular features usually included in DSPI wrapped phase distributions, such as shears, speckle noise, fringe cuts, object physical limits, and superimposed phase maps, are analyzed. Some adequate approaches to solving these features are discussed. Finally, it is shown that a complex case in which shears and fringe cuts coexist in the wrapped phase cannot be solved satisfactorily with the minimum L0-norm algorithm by itself. To cope with this problem, we propose a new scheme.

© 1998 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

History
Original Manuscript: March 3, 1998
Revised Manuscript: July 21, 1998
Published: November 10, 1998

Citation
Pablo D. Ruiz, Guillermo H. Kaufmann, and Gustavo E. Galizzi, "Unwrapping of digital speckle-pattern interferometry phase maps by use of a minimum L0-norm algorithm," Appl. Opt. 37, 7632-7644 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-32-7632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. J. Løkberg, “Recent developments in video speckle interferometry,” in Speckle Metrology, R. S. Sirohi, ed. (Marcel Dekker, New York, 1993), pp. 157–194.
  2. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993), pp. 94–140.
  3. M. Kujawinska, “Spatial phase measurement methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993), pp. 141–193.
  4. D. W. Robinson, “Phase unwrapping methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Bristol, UK, 1993), pp. 194–229.
  5. A. L. Gray, P. J. Farris-Manning, “Repeat-pass interferometry with airborne synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 31, 180–191 (1993). [CrossRef]
  6. S. M. Song, S. Napel, N. J. Pelc, G. H. Glover, “Phase unwrapping of MR phase images using Poisson equation,” IEEE Trans. Image Process. 4, 667–676 (1995). [CrossRef]
  7. J. M. Huntley, J. R. Buckland, “Characterization of sources of 2π phase discontinuity in speckle interferograms,” J. Opt. Soc. Am. A 12, 1990–1996 (1995). [CrossRef]
  8. R. T. Judge, P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Laser Eng. 21, 199–239 (1994). [CrossRef]
  9. J. A. Quiroga, E. Bernabeu, “Phase-unwrapping algorithm for noisy phase-map processing,” Appl. Opt. 33, 6725–6731 (1994). [CrossRef] [PubMed]
  10. J. A. Quiroga, A. Gonzalez-Cano, E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Appl. Opt. 34, 2560–2563 (1995). [CrossRef] [PubMed]
  11. R. Cusack, J. M. Huntley, H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995). [CrossRef] [PubMed]
  12. J. L. Marroquin, M. Rivera, “Quadratic regularization functional for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995). [CrossRef]
  13. J. R. Buckland, J. M. Huntley, S. R. E. Turner, “Unwrapping of noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34, 5100–5108 (1995). [CrossRef] [PubMed]
  14. C. De Veuster, P. Slangen, Y. Renotte, L. Berwart, Y. Lion, “Disk-growing algorithm for phase-map unwrapping: application to speckle interferograms,” Appl. Opt. 35, 240–247 (1996). [CrossRef] [PubMed]
  15. P. G. Charette, I. W. Hunter, “Robust phase-unwrapping method for phase images with high noise content,” Appl. Opt. 35, 3506–3513 (1996). [CrossRef] [PubMed]
  16. M. Arevalillo Herraez, D. R. Burton, M. J. Lalor, D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35, 5847–5852 (1996). [CrossRef]
  17. K. A. Stetson, J. Wahid, P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 20, 4830–4838 (1997). [CrossRef]
  18. T. J. Fynn, “Two-dimensional phase unwrapping algorithm with minimum weighted discontinuity,” J. Opt. Soc. Am. A 14, 2692–2701 (1997). [CrossRef]
  19. M. Rivera, J. L. Marroquin, M. Servin, R. Rodriguez-Vera, “Fast algorithm for integrating inconsistent gradient fields,” Appl. Opt. 36, 8381–8390 (1997). [CrossRef]
  20. H. Takajo, T. Takahashi, “Least-squares phase estimation from phase differences,” J. Opt. Soc. Am. A 5, 416–425 (1988). [CrossRef]
  21. H. Takajo, T. Takahashi, “Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 1818–1827 (1988). [CrossRef]
  22. D. C. Ghiglia, L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [CrossRef]
  23. D. Kerr, G. H. Kaufmann, G. E. Galizzi, “Unwrapping of interferometric phase-fringe maps by the discrete cosine transform,” Appl. Opt. 35, 810–816 (1996). [CrossRef] [PubMed]
  24. G. H. Kaufmann, G. E. Galizzi, “Unwrapping of electronic speckle pattern interferometry phase maps: evaluation of an iterative weighted algorithm,” Opt. Eng. 37, 622–628 (1998). [CrossRef]
  25. G. H. Kaufmann, G. E. Galizzi, P. D. Ruiz, “Evaluation of a preconditioned conjugate-gradient algorithm for weighted least-squares unwrapping of DSPI phase maps,” Appl. Opt. 37, 3076–3084 (1998). [CrossRef]
  26. D. C. Ghiglia, L. A. Romero, “Minimum Lp-norm two-dimensional phase unwrapping,” J. Opt. Soc. Am. A 13, 1999–2012 (1996). [CrossRef]
  27. A. Davila, G. H. Kaufmann, D. Kerr, “Digital processing of ESPI addition fringes,” in Fringe’93—Second International Workshop in Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie Verlag, Berlin, 1993), pp. 339–346.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited